| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frpoinsg.1 | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  ( ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) [ 𝑧  /  𝑦 ] 𝜑  →  𝜑 ) ) | 
						
							| 2 |  | dfss3 | ⊢ ( Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  { 𝑦  ∈  𝐴  ∣  𝜑 }  ↔  ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) 𝑧  ∈  { 𝑦  ∈  𝐴  ∣  𝜑 } ) | 
						
							| 3 |  | nfcv | ⊢ Ⅎ 𝑦 𝐴 | 
						
							| 4 | 3 | elrabsf | ⊢ ( 𝑧  ∈  { 𝑦  ∈  𝐴  ∣  𝜑 }  ↔  ( 𝑧  ∈  𝐴  ∧  [ 𝑧  /  𝑦 ] 𝜑 ) ) | 
						
							| 5 | 4 | simprbi | ⊢ ( 𝑧  ∈  { 𝑦  ∈  𝐴  ∣  𝜑 }  →  [ 𝑧  /  𝑦 ] 𝜑 ) | 
						
							| 6 | 5 | ralimi | ⊢ ( ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) 𝑧  ∈  { 𝑦  ∈  𝐴  ∣  𝜑 }  →  ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) [ 𝑧  /  𝑦 ] 𝜑 ) | 
						
							| 7 | 2 6 | sylbi | ⊢ ( Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  { 𝑦  ∈  𝐴  ∣  𝜑 }  →  ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) [ 𝑧  /  𝑦 ] 𝜑 ) | 
						
							| 8 |  | nfv | ⊢ Ⅎ 𝑦 ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑤  ∈  𝐴 ) | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑦 Pred ( 𝑅 ,  𝐴 ,  𝑤 ) | 
						
							| 10 |  | nfsbc1v | ⊢ Ⅎ 𝑦 [ 𝑧  /  𝑦 ] 𝜑 | 
						
							| 11 | 9 10 | nfralw | ⊢ Ⅎ 𝑦 ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) [ 𝑧  /  𝑦 ] 𝜑 | 
						
							| 12 |  | nfsbc1v | ⊢ Ⅎ 𝑦 [ 𝑤  /  𝑦 ] 𝜑 | 
						
							| 13 | 11 12 | nfim | ⊢ Ⅎ 𝑦 ( ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) [ 𝑧  /  𝑦 ] 𝜑  →  [ 𝑤  /  𝑦 ] 𝜑 ) | 
						
							| 14 | 8 13 | nfim | ⊢ Ⅎ 𝑦 ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑤  ∈  𝐴 )  →  ( ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) [ 𝑧  /  𝑦 ] 𝜑  →  [ 𝑤  /  𝑦 ] 𝜑 ) ) | 
						
							| 15 |  | eleq1w | ⊢ ( 𝑦  =  𝑤  →  ( 𝑦  ∈  𝐴  ↔  𝑤  ∈  𝐴 ) ) | 
						
							| 16 | 15 | anbi2d | ⊢ ( 𝑦  =  𝑤  →  ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑦  ∈  𝐴 )  ↔  ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑤  ∈  𝐴 ) ) ) | 
						
							| 17 |  | predeq3 | ⊢ ( 𝑦  =  𝑤  →  Pred ( 𝑅 ,  𝐴 ,  𝑦 )  =  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) | 
						
							| 18 | 17 | raleqdv | ⊢ ( 𝑦  =  𝑤  →  ( ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) [ 𝑧  /  𝑦 ] 𝜑  ↔  ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) [ 𝑧  /  𝑦 ] 𝜑 ) ) | 
						
							| 19 |  | sbceq1a | ⊢ ( 𝑦  =  𝑤  →  ( 𝜑  ↔  [ 𝑤  /  𝑦 ] 𝜑 ) ) | 
						
							| 20 | 18 19 | imbi12d | ⊢ ( 𝑦  =  𝑤  →  ( ( ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) [ 𝑧  /  𝑦 ] 𝜑  →  𝜑 )  ↔  ( ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) [ 𝑧  /  𝑦 ] 𝜑  →  [ 𝑤  /  𝑦 ] 𝜑 ) ) ) | 
						
							| 21 | 16 20 | imbi12d | ⊢ ( 𝑦  =  𝑤  →  ( ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  ( ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) [ 𝑧  /  𝑦 ] 𝜑  →  𝜑 ) )  ↔  ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑤  ∈  𝐴 )  →  ( ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) [ 𝑧  /  𝑦 ] 𝜑  →  [ 𝑤  /  𝑦 ] 𝜑 ) ) ) ) | 
						
							| 22 | 14 21 1 | chvarfv | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑤  ∈  𝐴 )  →  ( ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) [ 𝑧  /  𝑦 ] 𝜑  →  [ 𝑤  /  𝑦 ] 𝜑 ) ) | 
						
							| 23 | 7 22 | syl5 | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑤  ∈  𝐴 )  →  ( Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  { 𝑦  ∈  𝐴  ∣  𝜑 }  →  [ 𝑤  /  𝑦 ] 𝜑 ) ) | 
						
							| 24 |  | simpr | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑤  ∈  𝐴 )  →  𝑤  ∈  𝐴 ) | 
						
							| 25 | 23 24 | jctild | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑤  ∈  𝐴 )  →  ( Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  { 𝑦  ∈  𝐴  ∣  𝜑 }  →  ( 𝑤  ∈  𝐴  ∧  [ 𝑤  /  𝑦 ] 𝜑 ) ) ) | 
						
							| 26 | 3 | elrabsf | ⊢ ( 𝑤  ∈  { 𝑦  ∈  𝐴  ∣  𝜑 }  ↔  ( 𝑤  ∈  𝐴  ∧  [ 𝑤  /  𝑦 ] 𝜑 ) ) | 
						
							| 27 | 25 26 | imbitrrdi | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑤  ∈  𝐴 )  →  ( Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  { 𝑦  ∈  𝐴  ∣  𝜑 }  →  𝑤  ∈  { 𝑦  ∈  𝐴  ∣  𝜑 } ) ) | 
						
							| 28 | 27 | ralrimiva | ⊢ ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  →  ∀ 𝑤  ∈  𝐴 ( Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  { 𝑦  ∈  𝐴  ∣  𝜑 }  →  𝑤  ∈  { 𝑦  ∈  𝐴  ∣  𝜑 } ) ) | 
						
							| 29 |  | ssrab2 | ⊢ { 𝑦  ∈  𝐴  ∣  𝜑 }  ⊆  𝐴 | 
						
							| 30 | 28 29 | jctil | ⊢ ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  →  ( { 𝑦  ∈  𝐴  ∣  𝜑 }  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝐴 ( Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  { 𝑦  ∈  𝐴  ∣  𝜑 }  →  𝑤  ∈  { 𝑦  ∈  𝐴  ∣  𝜑 } ) ) ) | 
						
							| 31 |  | frpoind | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( { 𝑦  ∈  𝐴  ∣  𝜑 }  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝐴 ( Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  { 𝑦  ∈  𝐴  ∣  𝜑 }  →  𝑤  ∈  { 𝑦  ∈  𝐴  ∣  𝜑 } ) ) )  →  𝐴  =  { 𝑦  ∈  𝐴  ∣  𝜑 } ) | 
						
							| 32 | 30 31 | mpdan | ⊢ ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  →  𝐴  =  { 𝑦  ∈  𝐴  ∣  𝜑 } ) | 
						
							| 33 |  | rabid2 | ⊢ ( 𝐴  =  { 𝑦  ∈  𝐴  ∣  𝜑 }  ↔  ∀ 𝑦  ∈  𝐴 𝜑 ) | 
						
							| 34 | 32 33 | sylib | ⊢ ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  →  ∀ 𝑦  ∈  𝐴 𝜑 ) |