| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frr.1 | ⊢ 𝐹  =  frecs ( 𝑅 ,  𝐴 ,  𝐺 ) | 
						
							| 2 |  | eqid | ⊢ { 𝑎  ∣  ∃ 𝑏 ( 𝑎  Fn  𝑏  ∧  ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑐  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑐 )  ⊆  𝑏 )  ∧  ∀ 𝑐  ∈  𝑏 ( 𝑎 ‘ 𝑐 )  =  ( 𝑐 𝐺 ( 𝑎  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑐 ) ) ) ) }  =  { 𝑎  ∣  ∃ 𝑏 ( 𝑎  Fn  𝑏  ∧  ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑐  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑐 )  ⊆  𝑏 )  ∧  ∀ 𝑐  ∈  𝑏 ( 𝑎 ‘ 𝑐 )  =  ( 𝑐 𝐺 ( 𝑎  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑐 ) ) ) ) } | 
						
							| 3 | 2 | frrlem1 | ⊢ { 𝑎  ∣  ∃ 𝑏 ( 𝑎  Fn  𝑏  ∧  ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑐  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑐 )  ⊆  𝑏 )  ∧  ∀ 𝑐  ∈  𝑏 ( 𝑎 ‘ 𝑐 )  =  ( 𝑐 𝐺 ( 𝑎  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑐 ) ) ) ) }  =  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } | 
						
							| 4 | 3 1 | frrlem15 | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝑔  ∈  { 𝑎  ∣  ∃ 𝑏 ( 𝑎  Fn  𝑏  ∧  ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑐  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑐 )  ⊆  𝑏 )  ∧  ∀ 𝑐  ∈  𝑏 ( 𝑎 ‘ 𝑐 )  =  ( 𝑐 𝐺 ( 𝑎  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑐 ) ) ) ) }  ∧  ℎ  ∈  { 𝑎  ∣  ∃ 𝑏 ( 𝑎  Fn  𝑏  ∧  ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑐  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑐 )  ⊆  𝑏 )  ∧  ∀ 𝑐  ∈  𝑏 ( 𝑎 ‘ 𝑐 )  =  ( 𝑐 𝐺 ( 𝑎  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑐 ) ) ) ) } ) )  →  ( ( 𝑥 𝑔 𝑢  ∧  𝑥 ℎ 𝑣 )  →  𝑢  =  𝑣 ) ) | 
						
							| 5 | 3 1 4 | frrlem9 | ⊢ ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  →  Fun  𝐹 ) | 
						
							| 6 |  | eqid | ⊢ ( ( 𝐹  ↾  Pred ( t++ ( 𝑅  ↾  𝐴 ) ,  𝐴 ,  𝑧 ) )  ∪  { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 } )  =  ( ( 𝐹  ↾  Pred ( t++ ( 𝑅  ↾  𝐴 ) ,  𝐴 ,  𝑧 ) )  ∪  { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 } ) | 
						
							| 7 |  | simpl | ⊢ ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  →  𝑅  Fr  𝐴 ) | 
						
							| 8 |  | predres | ⊢ Pred ( 𝑅 ,  𝐴 ,  𝑧 )  =  Pred ( ( 𝑅  ↾  𝐴 ) ,  𝐴 ,  𝑧 ) | 
						
							| 9 |  | relres | ⊢ Rel  ( 𝑅  ↾  𝐴 ) | 
						
							| 10 |  | ssttrcl | ⊢ ( Rel  ( 𝑅  ↾  𝐴 )  →  ( 𝑅  ↾  𝐴 )  ⊆  t++ ( 𝑅  ↾  𝐴 ) ) | 
						
							| 11 |  | predrelss | ⊢ ( ( 𝑅  ↾  𝐴 )  ⊆  t++ ( 𝑅  ↾  𝐴 )  →  Pred ( ( 𝑅  ↾  𝐴 ) ,  𝐴 ,  𝑧 )  ⊆  Pred ( t++ ( 𝑅  ↾  𝐴 ) ,  𝐴 ,  𝑧 ) ) | 
						
							| 12 | 9 10 11 | mp2b | ⊢ Pred ( ( 𝑅  ↾  𝐴 ) ,  𝐴 ,  𝑧 )  ⊆  Pred ( t++ ( 𝑅  ↾  𝐴 ) ,  𝐴 ,  𝑧 ) | 
						
							| 13 | 8 12 | eqsstri | ⊢ Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  Pred ( t++ ( 𝑅  ↾  𝐴 ) ,  𝐴 ,  𝑧 ) | 
						
							| 14 | 13 | a1i | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑧  ∈  𝐴 )  →  Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  Pred ( t++ ( 𝑅  ↾  𝐴 ) ,  𝐴 ,  𝑧 ) ) | 
						
							| 15 |  | frrlem16 | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑧  ∈  𝐴 )  →  ∀ 𝑎  ∈  Pred ( t++ ( 𝑅  ↾  𝐴 ) ,  𝐴 ,  𝑧 ) Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  Pred ( t++ ( 𝑅  ↾  𝐴 ) ,  𝐴 ,  𝑧 ) ) | 
						
							| 16 |  | ttrclse | ⊢ ( 𝑅  Se  𝐴  →  t++ ( 𝑅  ↾  𝐴 )  Se  𝐴 ) | 
						
							| 17 |  | setlikespec | ⊢ ( ( 𝑧  ∈  𝐴  ∧  t++ ( 𝑅  ↾  𝐴 )  Se  𝐴 )  →  Pred ( t++ ( 𝑅  ↾  𝐴 ) ,  𝐴 ,  𝑧 )  ∈  V ) | 
						
							| 18 | 17 | ancoms | ⊢ ( ( t++ ( 𝑅  ↾  𝐴 )  Se  𝐴  ∧  𝑧  ∈  𝐴 )  →  Pred ( t++ ( 𝑅  ↾  𝐴 ) ,  𝐴 ,  𝑧 )  ∈  V ) | 
						
							| 19 | 16 18 | sylan | ⊢ ( ( 𝑅  Se  𝐴  ∧  𝑧  ∈  𝐴 )  →  Pred ( t++ ( 𝑅  ↾  𝐴 ) ,  𝐴 ,  𝑧 )  ∈  V ) | 
						
							| 20 | 19 | adantll | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑧  ∈  𝐴 )  →  Pred ( t++ ( 𝑅  ↾  𝐴 ) ,  𝐴 ,  𝑧 )  ∈  V ) | 
						
							| 21 |  | predss | ⊢ Pred ( t++ ( 𝑅  ↾  𝐴 ) ,  𝐴 ,  𝑧 )  ⊆  𝐴 | 
						
							| 22 | 21 | a1i | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑧  ∈  𝐴 )  →  Pred ( t++ ( 𝑅  ↾  𝐴 ) ,  𝐴 ,  𝑧 )  ⊆  𝐴 ) | 
						
							| 23 |  | difss | ⊢ ( 𝐴  ∖  dom  𝐹 )  ⊆  𝐴 | 
						
							| 24 |  | frmin | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( ( 𝐴  ∖  dom  𝐹 )  ⊆  𝐴  ∧  ( 𝐴  ∖  dom  𝐹 )  ≠  ∅ ) )  →  ∃ 𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) Pred ( 𝑅 ,  ( 𝐴  ∖  dom  𝐹 ) ,  𝑧 )  =  ∅ ) | 
						
							| 25 | 23 24 | mpanr1 | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝐴  ∖  dom  𝐹 )  ≠  ∅ )  →  ∃ 𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) Pred ( 𝑅 ,  ( 𝐴  ∖  dom  𝐹 ) ,  𝑧 )  =  ∅ ) | 
						
							| 26 | 3 1 4 6 7 14 15 20 22 25 | frrlem14 | ⊢ ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  →  dom  𝐹  =  𝐴 ) | 
						
							| 27 |  | df-fn | ⊢ ( 𝐹  Fn  𝐴  ↔  ( Fun  𝐹  ∧  dom  𝐹  =  𝐴 ) ) | 
						
							| 28 | 5 26 27 | sylanbrc | ⊢ ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  →  𝐹  Fn  𝐴 ) |