| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frr.1 | ⊢ 𝐹  =  frecs ( 𝑅 ,  𝐴 ,  𝐺 ) | 
						
							| 2 | 1 | frr1 | ⊢ ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  →  𝐹  Fn  𝐴 ) | 
						
							| 3 | 2 | fndmd | ⊢ ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  →  dom  𝐹  =  𝐴 ) | 
						
							| 4 | 3 | eleq2d | ⊢ ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  →  ( 𝑋  ∈  dom  𝐹  ↔  𝑋  ∈  𝐴 ) ) | 
						
							| 5 | 4 | pm5.32i | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  ↔  ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  𝐴 ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑦  =  𝑋  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 7 |  | id | ⊢ ( 𝑦  =  𝑋  →  𝑦  =  𝑋 ) | 
						
							| 8 |  | predeq3 | ⊢ ( 𝑦  =  𝑋  →  Pred ( 𝑅 ,  𝐴 ,  𝑦 )  =  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) | 
						
							| 9 | 8 | reseq2d | ⊢ ( 𝑦  =  𝑋  →  ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) )  =  ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) ) | 
						
							| 10 | 7 9 | oveq12d | ⊢ ( 𝑦  =  𝑋  →  ( 𝑦 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  =  ( 𝑋 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) ) ) | 
						
							| 11 | 6 10 | eqeq12d | ⊢ ( 𝑦  =  𝑋  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) )  ↔  ( 𝐹 ‘ 𝑋 )  =  ( 𝑋 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) ) ) ) | 
						
							| 12 | 11 | imbi2d | ⊢ ( 𝑦  =  𝑋  →  ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) )  ↔  ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  →  ( 𝐹 ‘ 𝑋 )  =  ( 𝑋 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) ) ) ) ) | 
						
							| 13 |  | eqid | ⊢ { 𝑎  ∣  ∃ 𝑏 ( 𝑎  Fn  𝑏  ∧  ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑐  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑐 )  ⊆  𝑏 )  ∧  ∀ 𝑐  ∈  𝑏 ( 𝑎 ‘ 𝑐 )  =  ( 𝑐 𝐺 ( 𝑎  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑐 ) ) ) ) }  =  { 𝑎  ∣  ∃ 𝑏 ( 𝑎  Fn  𝑏  ∧  ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑐  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑐 )  ⊆  𝑏 )  ∧  ∀ 𝑐  ∈  𝑏 ( 𝑎 ‘ 𝑐 )  =  ( 𝑐 𝐺 ( 𝑎  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑐 ) ) ) ) } | 
						
							| 14 | 13 | frrlem1 | ⊢ { 𝑎  ∣  ∃ 𝑏 ( 𝑎  Fn  𝑏  ∧  ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑐  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑐 )  ⊆  𝑏 )  ∧  ∀ 𝑐  ∈  𝑏 ( 𝑎 ‘ 𝑐 )  =  ( 𝑐 𝐺 ( 𝑎  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑐 ) ) ) ) }  =  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } | 
						
							| 15 | 14 1 | frrlem15 | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝑔  ∈  { 𝑎  ∣  ∃ 𝑏 ( 𝑎  Fn  𝑏  ∧  ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑐  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑐 )  ⊆  𝑏 )  ∧  ∀ 𝑐  ∈  𝑏 ( 𝑎 ‘ 𝑐 )  =  ( 𝑐 𝐺 ( 𝑎  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑐 ) ) ) ) }  ∧  ℎ  ∈  { 𝑎  ∣  ∃ 𝑏 ( 𝑎  Fn  𝑏  ∧  ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑐  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑐 )  ⊆  𝑏 )  ∧  ∀ 𝑐  ∈  𝑏 ( 𝑎 ‘ 𝑐 )  =  ( 𝑐 𝐺 ( 𝑎  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑐 ) ) ) ) } ) )  →  ( ( 𝑥 𝑔 𝑢  ∧  𝑥 ℎ 𝑣 )  →  𝑢  =  𝑣 ) ) | 
						
							| 16 | 14 1 15 | frrlem10 | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑦  ∈  dom  𝐹 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) | 
						
							| 17 | 16 | expcom | ⊢ ( 𝑦  ∈  dom  𝐹  →  ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) ) | 
						
							| 18 | 12 17 | vtoclga | ⊢ ( 𝑋  ∈  dom  𝐹  →  ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  →  ( 𝐹 ‘ 𝑋 )  =  ( 𝑋 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) ) ) ) | 
						
							| 19 | 18 | impcom | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  →  ( 𝐹 ‘ 𝑋 )  =  ( 𝑋 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) ) ) | 
						
							| 20 | 5 19 | sylbir | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑋 )  =  ( 𝑋 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) ) ) |