| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frr.1 | ⊢ 𝐹  =  frecs ( 𝑅 ,  𝐴 ,  𝐺 ) | 
						
							| 2 |  | simpl | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝐻  Fn  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ( 𝐻 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝐻  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) )  →  ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 ) ) | 
						
							| 3 | 1 | frr1 | ⊢ ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  →  𝐹  Fn  𝐴 ) | 
						
							| 4 | 1 | frr2 | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑧  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) | 
						
							| 5 | 4 | ralrimiva | ⊢ ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  →  ∀ 𝑧  ∈  𝐴 ( 𝐹 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) | 
						
							| 6 | 3 5 | jca | ⊢ ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  →  ( 𝐹  Fn  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ( 𝐹 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝐻  Fn  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ( 𝐻 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝐻  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) )  →  ( 𝐹  Fn  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ( 𝐹 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) ) | 
						
							| 8 |  | simpr | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝐻  Fn  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ( 𝐻 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝐻  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) )  →  ( 𝐻  Fn  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ( 𝐻 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝐻  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) ) | 
						
							| 9 |  | frr3g | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝐹  Fn  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ( 𝐹 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) )  ∧  ( 𝐻  Fn  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ( 𝐻 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝐻  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) )  →  𝐹  =  𝐻 ) | 
						
							| 10 | 2 7 8 9 | syl3anc | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝐻  Fn  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ( 𝐻 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝐻  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) )  →  𝐹  =  𝐻 ) |