| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frrrel.1 | ⊢ 𝐹  =  frecs ( 𝑅 ,  𝐴 ,  𝐺 ) | 
						
							| 2 |  | predeq3 | ⊢ ( 𝑧  =  𝑋  →  Pred ( 𝑅 ,  𝐴 ,  𝑧 )  =  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) | 
						
							| 3 | 2 | sseq1d | ⊢ ( 𝑧  =  𝑋  →  ( Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  dom  𝐹  ↔  Pred ( 𝑅 ,  𝐴 ,  𝑋 )  ⊆  dom  𝐹 ) ) | 
						
							| 4 |  | eqid | ⊢ { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) }  =  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } | 
						
							| 5 | 4 1 | frrlem8 | ⊢ ( 𝑧  ∈  dom  𝐹  →  Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  dom  𝐹 ) | 
						
							| 6 | 3 5 | vtoclga | ⊢ ( 𝑋  ∈  dom  𝐹  →  Pred ( 𝑅 ,  𝐴 ,  𝑋 )  ⊆  dom  𝐹 ) |