| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frrlem11.1 | ⊢ 𝐵  =  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } | 
						
							| 2 |  | frrlem11.2 | ⊢ 𝐹  =  frecs ( 𝑅 ,  𝐴 ,  𝐺 ) | 
						
							| 3 |  | frrlem11.3 | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 ) )  →  ( ( 𝑥 𝑔 𝑢  ∧  𝑥 ℎ 𝑣 )  →  𝑢  =  𝑣 ) ) | 
						
							| 4 |  | frrlem11.4 | ⊢ 𝐶  =  ( ( 𝐹  ↾  𝑆 )  ∪  { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 } ) | 
						
							| 5 | 1 2 3 | frrlem9 | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 6 | 5 | funresd | ⊢ ( 𝜑  →  Fun  ( 𝐹  ↾  𝑆 ) ) | 
						
							| 7 |  | dmres | ⊢ dom  ( 𝐹  ↾  𝑆 )  =  ( 𝑆  ∩  dom  𝐹 ) | 
						
							| 8 |  | df-fn | ⊢ ( ( 𝐹  ↾  𝑆 )  Fn  ( 𝑆  ∩  dom  𝐹 )  ↔  ( Fun  ( 𝐹  ↾  𝑆 )  ∧  dom  ( 𝐹  ↾  𝑆 )  =  ( 𝑆  ∩  dom  𝐹 ) ) ) | 
						
							| 9 | 7 8 | mpbiran2 | ⊢ ( ( 𝐹  ↾  𝑆 )  Fn  ( 𝑆  ∩  dom  𝐹 )  ↔  Fun  ( 𝐹  ↾  𝑆 ) ) | 
						
							| 10 | 6 9 | sylibr | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝑆 )  Fn  ( 𝑆  ∩  dom  𝐹 ) ) | 
						
							| 11 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 12 |  | ovex | ⊢ ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) )  ∈  V | 
						
							| 13 | 11 12 | fnsn | ⊢ { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 }  Fn  { 𝑧 } | 
						
							| 14 | 10 13 | jctir | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  𝑆 )  Fn  ( 𝑆  ∩  dom  𝐹 )  ∧  { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 }  Fn  { 𝑧 } ) ) | 
						
							| 15 |  | eldifn | ⊢ ( 𝑧  ∈  ( 𝐴  ∖  dom  𝐹 )  →  ¬  𝑧  ∈  dom  𝐹 ) | 
						
							| 16 |  | elinel2 | ⊢ ( 𝑧  ∈  ( 𝑆  ∩  dom  𝐹 )  →  𝑧  ∈  dom  𝐹 ) | 
						
							| 17 | 15 16 | nsyl | ⊢ ( 𝑧  ∈  ( 𝐴  ∖  dom  𝐹 )  →  ¬  𝑧  ∈  ( 𝑆  ∩  dom  𝐹 ) ) | 
						
							| 18 |  | disjsn | ⊢ ( ( ( 𝑆  ∩  dom  𝐹 )  ∩  { 𝑧 } )  =  ∅  ↔  ¬  𝑧  ∈  ( 𝑆  ∩  dom  𝐹 ) ) | 
						
							| 19 | 17 18 | sylibr | ⊢ ( 𝑧  ∈  ( 𝐴  ∖  dom  𝐹 )  →  ( ( 𝑆  ∩  dom  𝐹 )  ∩  { 𝑧 } )  =  ∅ ) | 
						
							| 20 |  | fnun | ⊢ ( ( ( ( 𝐹  ↾  𝑆 )  Fn  ( 𝑆  ∩  dom  𝐹 )  ∧  { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 }  Fn  { 𝑧 } )  ∧  ( ( 𝑆  ∩  dom  𝐹 )  ∩  { 𝑧 } )  =  ∅ )  →  ( ( 𝐹  ↾  𝑆 )  ∪  { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 } )  Fn  ( ( 𝑆  ∩  dom  𝐹 )  ∪  { 𝑧 } ) ) | 
						
							| 21 | 14 19 20 | syl2an | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  →  ( ( 𝐹  ↾  𝑆 )  ∪  { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 } )  Fn  ( ( 𝑆  ∩  dom  𝐹 )  ∪  { 𝑧 } ) ) | 
						
							| 22 | 4 | fneq1i | ⊢ ( 𝐶  Fn  ( ( 𝑆  ∩  dom  𝐹 )  ∪  { 𝑧 } )  ↔  ( ( 𝐹  ↾  𝑆 )  ∪  { 〈 𝑧 ,  ( 𝑧 𝐺 ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 } )  Fn  ( ( 𝑆  ∩  dom  𝐹 )  ∪  { 𝑧 } ) ) | 
						
							| 23 | 21 22 | sylibr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) )  →  𝐶  Fn  ( ( 𝑆  ∩  dom  𝐹 )  ∪  { 𝑧 } ) ) |