| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frrlem11.1 |
⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } |
| 2 |
|
frrlem11.2 |
⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) |
| 3 |
|
frrlem11.3 |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 4 |
|
frrlem11.4 |
⊢ 𝐶 = ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) |
| 5 |
|
frrlem12.5 |
⊢ ( 𝜑 → 𝑅 Fr 𝐴 ) |
| 6 |
|
frrlem12.6 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑆 ) |
| 7 |
|
frrlem12.7 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ∀ 𝑤 ∈ 𝑆 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ) |
| 8 |
|
elun |
⊢ ( 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ↔ ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ∨ 𝑤 ∈ { 𝑧 } ) ) |
| 9 |
|
velsn |
⊢ ( 𝑤 ∈ { 𝑧 } ↔ 𝑤 = 𝑧 ) |
| 10 |
9
|
orbi2i |
⊢ ( ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ∨ 𝑤 ∈ { 𝑧 } ) ↔ ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ∨ 𝑤 = 𝑧 ) ) |
| 11 |
8 10
|
bitri |
⊢ ( 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ↔ ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ∨ 𝑤 = 𝑧 ) ) |
| 12 |
|
elinel2 |
⊢ ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) → 𝑤 ∈ dom 𝐹 ) |
| 13 |
1
|
frrlem1 |
⊢ 𝐵 = { 𝑝 ∣ ∃ 𝑞 ( 𝑝 Fn 𝑞 ∧ ( 𝑞 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑞 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑞 ) ∧ ∀ 𝑤 ∈ 𝑞 ( 𝑝 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑝 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) } |
| 14 |
|
breq1 |
⊢ ( 𝑥 = 𝑞 → ( 𝑥 𝑔 𝑢 ↔ 𝑞 𝑔 𝑢 ) ) |
| 15 |
|
breq1 |
⊢ ( 𝑥 = 𝑞 → ( 𝑥 ℎ 𝑣 ↔ 𝑞 ℎ 𝑣 ) ) |
| 16 |
14 15
|
anbi12d |
⊢ ( 𝑥 = 𝑞 → ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) ↔ ( 𝑞 𝑔 𝑢 ∧ 𝑞 ℎ 𝑣 ) ) ) |
| 17 |
16
|
imbi1d |
⊢ ( 𝑥 = 𝑞 → ( ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ↔ ( ( 𝑞 𝑔 𝑢 ∧ 𝑞 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) ) |
| 18 |
17
|
imbi2d |
⊢ ( 𝑥 = 𝑞 → ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) ↔ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑞 𝑔 𝑢 ∧ 𝑞 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) ) ) |
| 19 |
18 3
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑞 𝑔 𝑢 ∧ 𝑞 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 20 |
13 2 19
|
frrlem10 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
| 21 |
12 20
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝐹 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
| 22 |
21
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝐹 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
| 23 |
4
|
fveq1i |
⊢ ( 𝐶 ‘ 𝑤 ) = ( ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ‘ 𝑤 ) |
| 24 |
1 2 3
|
frrlem9 |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 25 |
24
|
funresd |
⊢ ( 𝜑 → Fun ( 𝐹 ↾ 𝑆 ) ) |
| 26 |
|
dmres |
⊢ dom ( 𝐹 ↾ 𝑆 ) = ( 𝑆 ∩ dom 𝐹 ) |
| 27 |
|
df-fn |
⊢ ( ( 𝐹 ↾ 𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) ↔ ( Fun ( 𝐹 ↾ 𝑆 ) ∧ dom ( 𝐹 ↾ 𝑆 ) = ( 𝑆 ∩ dom 𝐹 ) ) ) |
| 28 |
25 26 27
|
sylanblrc |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( 𝐹 ↾ 𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) ) |
| 30 |
29
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝐹 ↾ 𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) ) |
| 31 |
|
vex |
⊢ 𝑧 ∈ V |
| 32 |
|
ovex |
⊢ ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∈ V |
| 33 |
31 32
|
fnsn |
⊢ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } Fn { 𝑧 } |
| 34 |
33
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } Fn { 𝑧 } ) |
| 35 |
|
eldifn |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ¬ 𝑧 ∈ dom 𝐹 ) |
| 36 |
|
elinel2 |
⊢ ( 𝑧 ∈ ( 𝑆 ∩ dom 𝐹 ) → 𝑧 ∈ dom 𝐹 ) |
| 37 |
35 36
|
nsyl |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ¬ 𝑧 ∈ ( 𝑆 ∩ dom 𝐹 ) ) |
| 38 |
|
disjsn |
⊢ ( ( ( 𝑆 ∩ dom 𝐹 ) ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ ( 𝑆 ∩ dom 𝐹 ) ) |
| 39 |
37 38
|
sylibr |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ( ( 𝑆 ∩ dom 𝐹 ) ∩ { 𝑧 } ) = ∅ ) |
| 40 |
39
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( ( 𝑆 ∩ dom 𝐹 ) ∩ { 𝑧 } ) = ∅ ) |
| 41 |
40
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( ( 𝑆 ∩ dom 𝐹 ) ∩ { 𝑧 } ) = ∅ ) |
| 42 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) |
| 43 |
|
fvun1 |
⊢ ( ( ( 𝐹 ↾ 𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) ∧ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } Fn { 𝑧 } ∧ ( ( ( 𝑆 ∩ dom 𝐹 ) ∩ { 𝑧 } ) = ∅ ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) ) → ( ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ‘ 𝑤 ) = ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑤 ) ) |
| 44 |
30 34 41 42 43
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ‘ 𝑤 ) = ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑤 ) ) |
| 45 |
23 44
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝐶 ‘ 𝑤 ) = ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑤 ) ) |
| 46 |
|
elinel1 |
⊢ ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) → 𝑤 ∈ 𝑆 ) |
| 47 |
46
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → 𝑤 ∈ 𝑆 ) |
| 48 |
47
|
fvresd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑤 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 49 |
45 48
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝐶 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 50 |
1 2 3 4
|
frrlem11 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → 𝐶 Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) |
| 51 |
|
fnfun |
⊢ ( 𝐶 Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) → Fun 𝐶 ) |
| 52 |
50 51
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → Fun 𝐶 ) |
| 53 |
52
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → Fun 𝐶 ) |
| 54 |
|
ssun1 |
⊢ ( 𝐹 ↾ 𝑆 ) ⊆ ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) |
| 55 |
54 4
|
sseqtrri |
⊢ ( 𝐹 ↾ 𝑆 ) ⊆ 𝐶 |
| 56 |
55
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝐹 ↾ 𝑆 ) ⊆ 𝐶 ) |
| 57 |
|
eldifi |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → 𝑧 ∈ 𝐴 ) |
| 58 |
57 7
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ∀ 𝑤 ∈ 𝑆 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ) |
| 59 |
|
rspa |
⊢ ( ( ∀ 𝑤 ∈ 𝑆 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ∧ 𝑤 ∈ 𝑆 ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ) |
| 60 |
58 46 59
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ) |
| 61 |
1 2
|
frrlem8 |
⊢ ( 𝑤 ∈ dom 𝐹 → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom 𝐹 ) |
| 62 |
12 61
|
syl |
⊢ ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom 𝐹 ) |
| 63 |
62
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom 𝐹 ) |
| 64 |
60 63
|
ssind |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( 𝑆 ∩ dom 𝐹 ) ) |
| 65 |
64 26
|
sseqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom ( 𝐹 ↾ 𝑆 ) ) |
| 66 |
|
fun2ssres |
⊢ ( ( Fun 𝐶 ∧ ( 𝐹 ↾ 𝑆 ) ⊆ 𝐶 ∧ Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom ( 𝐹 ↾ 𝑆 ) ) → ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) = ( ( 𝐹 ↾ 𝑆 ) ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) |
| 67 |
53 56 65 66
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) = ( ( 𝐹 ↾ 𝑆 ) ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) |
| 68 |
60
|
resabs1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( ( 𝐹 ↾ 𝑆 ) ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) |
| 69 |
67 68
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) |
| 70 |
69
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) = ( 𝑤 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
| 71 |
22 49 70
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
| 72 |
71
|
ex |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) → ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
| 73 |
31 32
|
fvsn |
⊢ ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 74 |
4
|
fveq1i |
⊢ ( 𝐶 ‘ 𝑧 ) = ( ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ‘ 𝑧 ) |
| 75 |
33
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } Fn { 𝑧 } ) |
| 76 |
|
vsnid |
⊢ 𝑧 ∈ { 𝑧 } |
| 77 |
76
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → 𝑧 ∈ { 𝑧 } ) |
| 78 |
|
fvun2 |
⊢ ( ( ( 𝐹 ↾ 𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) ∧ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } Fn { 𝑧 } ∧ ( ( ( 𝑆 ∩ dom 𝐹 ) ∩ { 𝑧 } ) = ∅ ∧ 𝑧 ∈ { 𝑧 } ) ) → ( ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ‘ 𝑧 ) = ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ‘ 𝑧 ) ) |
| 79 |
29 75 40 77 78
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ‘ 𝑧 ) = ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ‘ 𝑧 ) ) |
| 80 |
74 79
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( 𝐶 ‘ 𝑧 ) = ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ‘ 𝑧 ) ) |
| 81 |
4
|
reseq1i |
⊢ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
| 82 |
|
resundir |
⊢ ( ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( ( ( 𝐹 ↾ 𝑆 ) ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 83 |
81 82
|
eqtri |
⊢ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( ( ( 𝐹 ↾ 𝑆 ) ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 84 |
57 6
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑆 ) |
| 85 |
84
|
resabs1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( ( 𝐹 ↾ 𝑆 ) ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 86 |
|
predfrirr |
⊢ ( 𝑅 Fr 𝐴 → ¬ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
| 87 |
5 86
|
syl |
⊢ ( 𝜑 → ¬ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
| 88 |
87
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ¬ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
| 89 |
|
ressnop0 |
⊢ ( ¬ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) → ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ∅ ) |
| 90 |
88 89
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ∅ ) |
| 91 |
85 90
|
uneq12d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( ( ( 𝐹 ↾ 𝑆 ) ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ∅ ) ) |
| 92 |
|
un0 |
⊢ ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ∅ ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
| 93 |
91 92
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( ( ( 𝐹 ↾ 𝑆 ) ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 94 |
83 93
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 95 |
94
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( 𝑧 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
| 96 |
73 80 95
|
3eqtr4a |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( 𝐶 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
| 97 |
|
fveq2 |
⊢ ( 𝑤 = 𝑧 → ( 𝐶 ‘ 𝑤 ) = ( 𝐶 ‘ 𝑧 ) ) |
| 98 |
|
id |
⊢ ( 𝑤 = 𝑧 → 𝑤 = 𝑧 ) |
| 99 |
|
predeq3 |
⊢ ( 𝑤 = 𝑧 → Pred ( 𝑅 , 𝐴 , 𝑤 ) = Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
| 100 |
99
|
reseq2d |
⊢ ( 𝑤 = 𝑧 → ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) = ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 101 |
98 100
|
oveq12d |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) = ( 𝑧 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
| 102 |
97 101
|
eqeq12d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ↔ ( 𝐶 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) |
| 103 |
96 102
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( 𝑤 = 𝑧 → ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
| 104 |
72 103
|
jaod |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ∨ 𝑤 = 𝑧 ) → ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
| 105 |
11 104
|
biimtrid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) → ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
| 106 |
105
|
3impia |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) → ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |