| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frrlem11.1 |
⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } |
| 2 |
|
frrlem11.2 |
⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) |
| 3 |
|
frrlem11.3 |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 4 |
|
frrlem11.4 |
⊢ 𝐶 = ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) |
| 5 |
|
frrlem12.5 |
⊢ ( 𝜑 → 𝑅 Fr 𝐴 ) |
| 6 |
|
frrlem12.6 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑆 ) |
| 7 |
|
frrlem12.7 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ∀ 𝑤 ∈ 𝑆 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ) |
| 8 |
|
frrlem13.8 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑆 ∈ V ) |
| 9 |
|
frrlem13.9 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑆 ⊆ 𝐴 ) |
| 10 |
|
eldifi |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → 𝑧 ∈ 𝐴 ) |
| 11 |
10 8
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → 𝑆 ∈ V ) |
| 12 |
11
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → 𝑆 ∈ V ) |
| 13 |
|
inex1g |
⊢ ( 𝑆 ∈ V → ( 𝑆 ∩ dom 𝐹 ) ∈ V ) |
| 14 |
|
snex |
⊢ { 𝑧 } ∈ V |
| 15 |
|
unexg |
⊢ ( ( ( 𝑆 ∩ dom 𝐹 ) ∈ V ∧ { 𝑧 } ∈ V ) → ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ∈ V ) |
| 16 |
13 14 15
|
sylancl |
⊢ ( 𝑆 ∈ V → ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ∈ V ) |
| 17 |
12 16
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ∈ V ) |
| 18 |
1 2 3 4
|
frrlem11 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → 𝐶 Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) |
| 19 |
18
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → 𝐶 Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) |
| 20 |
|
inss1 |
⊢ ( 𝑆 ∩ dom 𝐹 ) ⊆ 𝑆 |
| 21 |
10 9
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → 𝑆 ⊆ 𝐴 ) |
| 22 |
21
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → 𝑆 ⊆ 𝐴 ) |
| 23 |
20 22
|
sstrid |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ( 𝑆 ∩ dom 𝐹 ) ⊆ 𝐴 ) |
| 24 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → 𝑧 ∈ 𝐴 ) |
| 25 |
24
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → 𝑧 ∈ 𝐴 ) |
| 26 |
25
|
snssd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → { 𝑧 } ⊆ 𝐴 ) |
| 27 |
23 26
|
unssd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ⊆ 𝐴 ) |
| 28 |
|
elun |
⊢ ( 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ↔ ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ∨ 𝑤 ∈ { 𝑧 } ) ) |
| 29 |
|
elin |
⊢ ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ↔ ( 𝑤 ∈ 𝑆 ∧ 𝑤 ∈ dom 𝐹 ) ) |
| 30 |
|
velsn |
⊢ ( 𝑤 ∈ { 𝑧 } ↔ 𝑤 = 𝑧 ) |
| 31 |
29 30
|
orbi12i |
⊢ ( ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ∨ 𝑤 ∈ { 𝑧 } ) ↔ ( ( 𝑤 ∈ 𝑆 ∧ 𝑤 ∈ dom 𝐹 ) ∨ 𝑤 = 𝑧 ) ) |
| 32 |
28 31
|
bitri |
⊢ ( 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ↔ ( ( 𝑤 ∈ 𝑆 ∧ 𝑤 ∈ dom 𝐹 ) ∨ 𝑤 = 𝑧 ) ) |
| 33 |
10 7
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ∀ 𝑤 ∈ 𝑆 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ) |
| 34 |
33
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ∀ 𝑤 ∈ 𝑆 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ) |
| 35 |
|
rsp |
⊢ ( ∀ 𝑤 ∈ 𝑆 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 → ( 𝑤 ∈ 𝑆 → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ) ) |
| 36 |
34 35
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ( 𝑤 ∈ 𝑆 → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ) ) |
| 37 |
1 2
|
frrlem8 |
⊢ ( 𝑤 ∈ dom 𝐹 → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom 𝐹 ) |
| 38 |
36 37
|
anim12d1 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ( ( 𝑤 ∈ 𝑆 ∧ 𝑤 ∈ dom 𝐹 ) → ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ∧ Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom 𝐹 ) ) ) |
| 39 |
|
ssin |
⊢ ( ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ∧ Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom 𝐹 ) ↔ Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( 𝑆 ∩ dom 𝐹 ) ) |
| 40 |
38 39
|
imbitrdi |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ( ( 𝑤 ∈ 𝑆 ∧ 𝑤 ∈ dom 𝐹 ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( 𝑆 ∩ dom 𝐹 ) ) ) |
| 41 |
10 6
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑆 ) |
| 42 |
41
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑆 ) |
| 43 |
|
preddif |
⊢ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ( Pred ( 𝑅 , 𝐴 , 𝑧 ) ∖ Pred ( 𝑅 , dom 𝐹 , 𝑧 ) ) |
| 44 |
43
|
eqeq1i |
⊢ ( Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ↔ ( Pred ( 𝑅 , 𝐴 , 𝑧 ) ∖ Pred ( 𝑅 , dom 𝐹 , 𝑧 ) ) = ∅ ) |
| 45 |
|
ssdif0 |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ Pred ( 𝑅 , dom 𝐹 , 𝑧 ) ↔ ( Pred ( 𝑅 , 𝐴 , 𝑧 ) ∖ Pred ( 𝑅 , dom 𝐹 , 𝑧 ) ) = ∅ ) |
| 46 |
44 45
|
sylbb2 |
⊢ ( Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ Pred ( 𝑅 , dom 𝐹 , 𝑧 ) ) |
| 47 |
|
predss |
⊢ Pred ( 𝑅 , dom 𝐹 , 𝑧 ) ⊆ dom 𝐹 |
| 48 |
46 47
|
sstrdi |
⊢ ( Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ dom 𝐹 ) |
| 49 |
48
|
adantl |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ dom 𝐹 ) |
| 50 |
49
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ dom 𝐹 ) |
| 51 |
42 50
|
ssind |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ ( 𝑆 ∩ dom 𝐹 ) ) |
| 52 |
|
predeq3 |
⊢ ( 𝑤 = 𝑧 → Pred ( 𝑅 , 𝐴 , 𝑤 ) = Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
| 53 |
52
|
sseq1d |
⊢ ( 𝑤 = 𝑧 → ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( 𝑆 ∩ dom 𝐹 ) ↔ Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ ( 𝑆 ∩ dom 𝐹 ) ) ) |
| 54 |
51 53
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ( 𝑤 = 𝑧 → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( 𝑆 ∩ dom 𝐹 ) ) ) |
| 55 |
40 54
|
jaod |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ( ( ( 𝑤 ∈ 𝑆 ∧ 𝑤 ∈ dom 𝐹 ) ∨ 𝑤 = 𝑧 ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( 𝑆 ∩ dom 𝐹 ) ) ) |
| 56 |
32 55
|
biimtrid |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ( 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( 𝑆 ∩ dom 𝐹 ) ) ) |
| 57 |
56
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) ∧ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( 𝑆 ∩ dom 𝐹 ) ) |
| 58 |
|
ssun1 |
⊢ ( 𝑆 ∩ dom 𝐹 ) ⊆ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) |
| 59 |
57 58
|
sstrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) ∧ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) |
| 60 |
59
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ∀ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) |
| 61 |
27 60
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ( ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ∀ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) ) |
| 62 |
1 2 3 4 5 6 7
|
frrlem12 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) → ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
| 63 |
62
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) → ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
| 64 |
63
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ∀ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
| 65 |
64
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ∀ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
| 66 |
|
fneq2 |
⊢ ( 𝑡 = ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) → ( 𝐶 Fn 𝑡 ↔ 𝐶 Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) ) |
| 67 |
|
sseq1 |
⊢ ( 𝑡 = ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) → ( 𝑡 ⊆ 𝐴 ↔ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ⊆ 𝐴 ) ) |
| 68 |
|
sseq2 |
⊢ ( 𝑡 = ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) → ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ↔ Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) ) |
| 69 |
68
|
raleqbi1dv |
⊢ ( 𝑡 = ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) → ( ∀ 𝑤 ∈ 𝑡 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ↔ ∀ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) ) |
| 70 |
67 69
|
anbi12d |
⊢ ( 𝑡 = ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) → ( ( 𝑡 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑡 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ) ↔ ( ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ∀ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) ) ) |
| 71 |
|
raleq |
⊢ ( 𝑡 = ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) → ( ∀ 𝑤 ∈ 𝑡 ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ↔ ∀ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
| 72 |
66 70 71
|
3anbi123d |
⊢ ( 𝑡 = ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) → ( ( 𝐶 Fn 𝑡 ∧ ( 𝑡 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑡 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝑡 ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ↔ ( 𝐶 Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ∧ ( ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ∀ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) ∧ ∀ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) ) |
| 73 |
72
|
spcegv |
⊢ ( ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ∈ V → ( ( 𝐶 Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ∧ ( ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ∀ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) ∧ ∀ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) → ∃ 𝑡 ( 𝐶 Fn 𝑡 ∧ ( 𝑡 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑡 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝑡 ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) ) |
| 74 |
73
|
imp |
⊢ ( ( ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ∈ V ∧ ( 𝐶 Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ∧ ( ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ∀ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) ∧ ∀ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) → ∃ 𝑡 ( 𝐶 Fn 𝑡 ∧ ( 𝑡 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑡 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝑡 ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
| 75 |
17 19 61 65 74
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ∃ 𝑡 ( 𝐶 Fn 𝑡 ∧ ( 𝑡 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑡 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝑡 ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
| 76 |
1 2 3
|
frrlem9 |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 77 |
|
resfunexg |
⊢ ( ( Fun 𝐹 ∧ 𝑆 ∈ V ) → ( 𝐹 ↾ 𝑆 ) ∈ V ) |
| 78 |
76 12 77
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ( 𝐹 ↾ 𝑆 ) ∈ V ) |
| 79 |
|
snex |
⊢ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ∈ V |
| 80 |
|
unexg |
⊢ ( ( ( 𝐹 ↾ 𝑆 ) ∈ V ∧ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ∈ V ) → ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ∈ V ) |
| 81 |
78 79 80
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ∈ V ) |
| 82 |
4 81
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → 𝐶 ∈ V ) |
| 83 |
|
fneq1 |
⊢ ( 𝑐 = 𝐶 → ( 𝑐 Fn 𝑡 ↔ 𝐶 Fn 𝑡 ) ) |
| 84 |
|
fveq1 |
⊢ ( 𝑐 = 𝐶 → ( 𝑐 ‘ 𝑤 ) = ( 𝐶 ‘ 𝑤 ) ) |
| 85 |
|
reseq1 |
⊢ ( 𝑐 = 𝐶 → ( 𝑐 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) = ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) |
| 86 |
85
|
oveq2d |
⊢ ( 𝑐 = 𝐶 → ( 𝑤 𝐺 ( 𝑐 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
| 87 |
84 86
|
eqeq12d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑐 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑐 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ↔ ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
| 88 |
87
|
ralbidv |
⊢ ( 𝑐 = 𝐶 → ( ∀ 𝑤 ∈ 𝑡 ( 𝑐 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑐 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ↔ ∀ 𝑤 ∈ 𝑡 ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
| 89 |
83 88
|
3anbi13d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑐 Fn 𝑡 ∧ ( 𝑡 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑡 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝑡 ( 𝑐 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑐 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ↔ ( 𝐶 Fn 𝑡 ∧ ( 𝑡 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑡 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝑡 ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) ) |
| 90 |
89
|
exbidv |
⊢ ( 𝑐 = 𝐶 → ( ∃ 𝑡 ( 𝑐 Fn 𝑡 ∧ ( 𝑡 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑡 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝑡 ( 𝑐 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑐 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ↔ ∃ 𝑡 ( 𝐶 Fn 𝑡 ∧ ( 𝑡 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑡 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝑡 ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) ) |
| 91 |
1
|
frrlem1 |
⊢ 𝐵 = { 𝑐 ∣ ∃ 𝑡 ( 𝑐 Fn 𝑡 ∧ ( 𝑡 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑡 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝑡 ( 𝑐 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑐 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) } |
| 92 |
90 91
|
elab2g |
⊢ ( 𝐶 ∈ V → ( 𝐶 ∈ 𝐵 ↔ ∃ 𝑡 ( 𝐶 Fn 𝑡 ∧ ( 𝑡 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑡 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝑡 ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) ) |
| 93 |
82 92
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ( 𝐶 ∈ 𝐵 ↔ ∃ 𝑡 ( 𝐶 Fn 𝑡 ∧ ( 𝑡 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑡 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝑡 ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) ) |
| 94 |
75 93
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → 𝐶 ∈ 𝐵 ) |