| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frrlem15.1 | ⊢ 𝐵  =  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } | 
						
							| 2 |  | frrlem15.2 | ⊢ 𝐹  =  frecs ( 𝑅 ,  𝐴 ,  𝐺 ) | 
						
							| 3 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 4 |  | vex | ⊢ 𝑢  ∈  V | 
						
							| 5 | 3 4 | breldm | ⊢ ( 𝑥 𝑔 𝑢  →  𝑥  ∈  dom  𝑔 ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑥 𝑔 𝑢  ∧  𝑥 ℎ 𝑣 )  →  𝑥  ∈  dom  𝑔 ) | 
						
							| 7 |  | vex | ⊢ 𝑣  ∈  V | 
						
							| 8 | 3 7 | breldm | ⊢ ( 𝑥 ℎ 𝑣  →  𝑥  ∈  dom  ℎ ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝑥 𝑔 𝑢  ∧  𝑥 ℎ 𝑣 )  →  𝑥  ∈  dom  ℎ ) | 
						
							| 10 | 6 9 | elind | ⊢ ( ( 𝑥 𝑔 𝑢  ∧  𝑥 ℎ 𝑣 )  →  𝑥  ∈  ( dom  𝑔  ∩  dom  ℎ ) ) | 
						
							| 11 |  | id | ⊢ ( ( 𝑥 𝑔 𝑢  ∧  𝑥 ℎ 𝑣 )  →  ( 𝑥 𝑔 𝑢  ∧  𝑥 ℎ 𝑣 ) ) | 
						
							| 12 | 4 | brresi | ⊢ ( 𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑢  ↔  ( 𝑥  ∈  ( dom  𝑔  ∩  dom  ℎ )  ∧  𝑥 𝑔 𝑢 ) ) | 
						
							| 13 | 7 | brresi | ⊢ ( 𝑥 ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣  ↔  ( 𝑥  ∈  ( dom  𝑔  ∩  dom  ℎ )  ∧  𝑥 ℎ 𝑣 ) ) | 
						
							| 14 | 12 13 | anbi12i | ⊢ ( ( 𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑢  ∧  𝑥 ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣 )  ↔  ( ( 𝑥  ∈  ( dom  𝑔  ∩  dom  ℎ )  ∧  𝑥 𝑔 𝑢 )  ∧  ( 𝑥  ∈  ( dom  𝑔  ∩  dom  ℎ )  ∧  𝑥 ℎ 𝑣 ) ) ) | 
						
							| 15 |  | an4 | ⊢ ( ( ( 𝑥  ∈  ( dom  𝑔  ∩  dom  ℎ )  ∧  𝑥 𝑔 𝑢 )  ∧  ( 𝑥  ∈  ( dom  𝑔  ∩  dom  ℎ )  ∧  𝑥 ℎ 𝑣 ) )  ↔  ( ( 𝑥  ∈  ( dom  𝑔  ∩  dom  ℎ )  ∧  𝑥  ∈  ( dom  𝑔  ∩  dom  ℎ ) )  ∧  ( 𝑥 𝑔 𝑢  ∧  𝑥 ℎ 𝑣 ) ) ) | 
						
							| 16 | 14 15 | bitri | ⊢ ( ( 𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑢  ∧  𝑥 ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣 )  ↔  ( ( 𝑥  ∈  ( dom  𝑔  ∩  dom  ℎ )  ∧  𝑥  ∈  ( dom  𝑔  ∩  dom  ℎ ) )  ∧  ( 𝑥 𝑔 𝑢  ∧  𝑥 ℎ 𝑣 ) ) ) | 
						
							| 17 | 10 10 11 16 | syl21anbrc | ⊢ ( ( 𝑥 𝑔 𝑢  ∧  𝑥 ℎ 𝑣 )  →  ( 𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑢  ∧  𝑥 ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣 ) ) | 
						
							| 18 |  | inss1 | ⊢ ( dom  𝑔  ∩  dom  ℎ )  ⊆  dom  𝑔 | 
						
							| 19 | 1 | frrlem3 | ⊢ ( 𝑔  ∈  𝐵  →  dom  𝑔  ⊆  𝐴 ) | 
						
							| 20 | 18 19 | sstrid | ⊢ ( 𝑔  ∈  𝐵  →  ( dom  𝑔  ∩  dom  ℎ )  ⊆  𝐴 ) | 
						
							| 21 | 20 | ad2antrl | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 ) )  →  ( dom  𝑔  ∩  dom  ℎ )  ⊆  𝐴 ) | 
						
							| 22 |  | simpll | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 ) )  →  𝑅  Fr  𝐴 ) | 
						
							| 23 |  | frss | ⊢ ( ( dom  𝑔  ∩  dom  ℎ )  ⊆  𝐴  →  ( 𝑅  Fr  𝐴  →  𝑅  Fr  ( dom  𝑔  ∩  dom  ℎ ) ) ) | 
						
							| 24 | 21 22 23 | sylc | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 ) )  →  𝑅  Fr  ( dom  𝑔  ∩  dom  ℎ ) ) | 
						
							| 25 |  | simplr | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 ) )  →  𝑅  Se  𝐴 ) | 
						
							| 26 |  | sess2 | ⊢ ( ( dom  𝑔  ∩  dom  ℎ )  ⊆  𝐴  →  ( 𝑅  Se  𝐴  →  𝑅  Se  ( dom  𝑔  ∩  dom  ℎ ) ) ) | 
						
							| 27 | 21 25 26 | sylc | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 ) )  →  𝑅  Se  ( dom  𝑔  ∩  dom  ℎ ) ) | 
						
							| 28 | 1 | frrlem4 | ⊢ ( ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 )  →  ( ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  Fn  ( dom  𝑔  ∩  dom  ℎ )  ∧  ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) ( ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ‘ 𝑎 )  =  ( 𝑎 𝐺 ( ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↾  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) ) ) ) ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 ) )  →  ( ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  Fn  ( dom  𝑔  ∩  dom  ℎ )  ∧  ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) ( ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ‘ 𝑎 )  =  ( 𝑎 𝐺 ( ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↾  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) ) ) ) ) | 
						
							| 30 | 1 | frrlem4 | ⊢ ( ( ℎ  ∈  𝐵  ∧  𝑔  ∈  𝐵 )  →  ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) )  Fn  ( dom  ℎ  ∩  dom  𝑔 )  ∧  ∀ 𝑎  ∈  ( dom  ℎ  ∩  dom  𝑔 ) ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) ) ‘ 𝑎 )  =  ( 𝑎 𝐺 ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) )  ↾  Pred ( 𝑅 ,  ( dom  ℎ  ∩  dom  𝑔 ) ,  𝑎 ) ) ) ) ) | 
						
							| 31 |  | incom | ⊢ ( dom  𝑔  ∩  dom  ℎ )  =  ( dom  ℎ  ∩  dom  𝑔 ) | 
						
							| 32 | 31 | reseq2i | ⊢ ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  =  ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) ) | 
						
							| 33 |  | fneq12 | ⊢ ( ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  =  ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) )  ∧  ( dom  𝑔  ∩  dom  ℎ )  =  ( dom  ℎ  ∩  dom  𝑔 ) )  →  ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  Fn  ( dom  𝑔  ∩  dom  ℎ )  ↔  ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) )  Fn  ( dom  ℎ  ∩  dom  𝑔 ) ) ) | 
						
							| 34 | 32 31 33 | mp2an | ⊢ ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  Fn  ( dom  𝑔  ∩  dom  ℎ )  ↔  ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) )  Fn  ( dom  ℎ  ∩  dom  𝑔 ) ) | 
						
							| 35 | 32 | fveq1i | ⊢ ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ‘ 𝑎 )  =  ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) ) ‘ 𝑎 ) | 
						
							| 36 |  | predeq2 | ⊢ ( ( dom  𝑔  ∩  dom  ℎ )  =  ( dom  ℎ  ∩  dom  𝑔 )  →  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 )  =  Pred ( 𝑅 ,  ( dom  ℎ  ∩  dom  𝑔 ) ,  𝑎 ) ) | 
						
							| 37 | 31 36 | ax-mp | ⊢ Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 )  =  Pred ( 𝑅 ,  ( dom  ℎ  ∩  dom  𝑔 ) ,  𝑎 ) | 
						
							| 38 | 32 37 | reseq12i | ⊢ ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↾  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) )  =  ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) )  ↾  Pred ( 𝑅 ,  ( dom  ℎ  ∩  dom  𝑔 ) ,  𝑎 ) ) | 
						
							| 39 | 38 | oveq2i | ⊢ ( 𝑎 𝐺 ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↾  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) ) )  =  ( 𝑎 𝐺 ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) )  ↾  Pred ( 𝑅 ,  ( dom  ℎ  ∩  dom  𝑔 ) ,  𝑎 ) ) ) | 
						
							| 40 | 35 39 | eqeq12i | ⊢ ( ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ‘ 𝑎 )  =  ( 𝑎 𝐺 ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↾  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) ) )  ↔  ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) ) ‘ 𝑎 )  =  ( 𝑎 𝐺 ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) )  ↾  Pred ( 𝑅 ,  ( dom  ℎ  ∩  dom  𝑔 ) ,  𝑎 ) ) ) ) | 
						
							| 41 | 31 40 | raleqbii | ⊢ ( ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ‘ 𝑎 )  =  ( 𝑎 𝐺 ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↾  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) ) )  ↔  ∀ 𝑎  ∈  ( dom  ℎ  ∩  dom  𝑔 ) ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) ) ‘ 𝑎 )  =  ( 𝑎 𝐺 ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) )  ↾  Pred ( 𝑅 ,  ( dom  ℎ  ∩  dom  𝑔 ) ,  𝑎 ) ) ) ) | 
						
							| 42 | 34 41 | anbi12i | ⊢ ( ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  Fn  ( dom  𝑔  ∩  dom  ℎ )  ∧  ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ‘ 𝑎 )  =  ( 𝑎 𝐺 ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↾  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) ) ) )  ↔  ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) )  Fn  ( dom  ℎ  ∩  dom  𝑔 )  ∧  ∀ 𝑎  ∈  ( dom  ℎ  ∩  dom  𝑔 ) ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) ) ‘ 𝑎 )  =  ( 𝑎 𝐺 ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) )  ↾  Pred ( 𝑅 ,  ( dom  ℎ  ∩  dom  𝑔 ) ,  𝑎 ) ) ) ) ) | 
						
							| 43 | 30 42 | sylibr | ⊢ ( ( ℎ  ∈  𝐵  ∧  𝑔  ∈  𝐵 )  →  ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  Fn  ( dom  𝑔  ∩  dom  ℎ )  ∧  ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ‘ 𝑎 )  =  ( 𝑎 𝐺 ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↾  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) ) ) ) ) | 
						
							| 44 | 43 | ancoms | ⊢ ( ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 )  →  ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  Fn  ( dom  𝑔  ∩  dom  ℎ )  ∧  ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ‘ 𝑎 )  =  ( 𝑎 𝐺 ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↾  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) ) ) ) ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 ) )  →  ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  Fn  ( dom  𝑔  ∩  dom  ℎ )  ∧  ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ‘ 𝑎 )  =  ( 𝑎 𝐺 ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↾  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) ) ) ) ) | 
						
							| 46 |  | frr3g | ⊢ ( ( ( 𝑅  Fr  ( dom  𝑔  ∩  dom  ℎ )  ∧  𝑅  Se  ( dom  𝑔  ∩  dom  ℎ ) )  ∧  ( ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  Fn  ( dom  𝑔  ∩  dom  ℎ )  ∧  ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) ( ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ‘ 𝑎 )  =  ( 𝑎 𝐺 ( ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↾  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) ) ) )  ∧  ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  Fn  ( dom  𝑔  ∩  dom  ℎ )  ∧  ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ‘ 𝑎 )  =  ( 𝑎 𝐺 ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↾  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) ) ) ) )  →  ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  =  ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ) | 
						
							| 47 | 24 27 29 45 46 | syl211anc | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 ) )  →  ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  =  ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ) | 
						
							| 48 | 47 | breqd | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 ) )  →  ( 𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣  ↔  𝑥 ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣 ) ) | 
						
							| 49 | 48 | biimprd | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 ) )  →  ( 𝑥 ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣  →  𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣 ) ) | 
						
							| 50 | 1 | frrlem2 | ⊢ ( 𝑔  ∈  𝐵  →  Fun  𝑔 ) | 
						
							| 51 | 50 | funresd | ⊢ ( 𝑔  ∈  𝐵  →  Fun  ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ) | 
						
							| 52 | 51 | ad2antrl | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 ) )  →  Fun  ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ) | 
						
							| 53 |  | dffun2 | ⊢ ( Fun  ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↔  ( Rel  ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ∧  ∀ 𝑥 ∀ 𝑢 ∀ 𝑣 ( ( 𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑢  ∧  𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣 )  →  𝑢  =  𝑣 ) ) ) | 
						
							| 54 |  | 2sp | ⊢ ( ∀ 𝑢 ∀ 𝑣 ( ( 𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑢  ∧  𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣 )  →  𝑢  =  𝑣 )  →  ( ( 𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑢  ∧  𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣 )  →  𝑢  =  𝑣 ) ) | 
						
							| 55 | 54 | sps | ⊢ ( ∀ 𝑥 ∀ 𝑢 ∀ 𝑣 ( ( 𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑢  ∧  𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣 )  →  𝑢  =  𝑣 )  →  ( ( 𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑢  ∧  𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣 )  →  𝑢  =  𝑣 ) ) | 
						
							| 56 | 53 55 | simplbiim | ⊢ ( Fun  ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  →  ( ( 𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑢  ∧  𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣 )  →  𝑢  =  𝑣 ) ) | 
						
							| 57 | 52 56 | syl | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 ) )  →  ( ( 𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑢  ∧  𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣 )  →  𝑢  =  𝑣 ) ) | 
						
							| 58 | 49 57 | sylan2d | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 ) )  →  ( ( 𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑢  ∧  𝑥 ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣 )  →  𝑢  =  𝑣 ) ) | 
						
							| 59 | 17 58 | syl5 | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 ) )  →  ( ( 𝑥 𝑔 𝑢  ∧  𝑥 ℎ 𝑣 )  →  𝑢  =  𝑣 ) ) |