| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frrlem5.1 | ⊢ 𝐵  =  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } | 
						
							| 2 |  | frrlem5.2 | ⊢ 𝐹  =  frecs ( 𝑅 ,  𝐴 ,  𝐺 ) | 
						
							| 3 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 4 | 3 | eldm2 | ⊢ ( 𝑧  ∈  dom  𝐹  ↔  ∃ 𝑤 〈 𝑧 ,  𝑤 〉  ∈  𝐹 ) | 
						
							| 5 | 1 2 | frrlem5 | ⊢ 𝐹  =  ∪  𝐵 | 
						
							| 6 | 1 | frrlem1 | ⊢ 𝐵  =  { 𝑔  ∣  ∃ 𝑎 ( 𝑔  Fn  𝑎  ∧  ( 𝑎  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 )  ∧  ∀ 𝑧  ∈  𝑎 ( 𝑔 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) } | 
						
							| 7 | 6 | unieqi | ⊢ ∪  𝐵  =  ∪  { 𝑔  ∣  ∃ 𝑎 ( 𝑔  Fn  𝑎  ∧  ( 𝑎  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 )  ∧  ∀ 𝑧  ∈  𝑎 ( 𝑔 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) } | 
						
							| 8 | 5 7 | eqtri | ⊢ 𝐹  =  ∪  { 𝑔  ∣  ∃ 𝑎 ( 𝑔  Fn  𝑎  ∧  ( 𝑎  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 )  ∧  ∀ 𝑧  ∈  𝑎 ( 𝑔 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) } | 
						
							| 9 | 8 | eleq2i | ⊢ ( 〈 𝑧 ,  𝑤 〉  ∈  𝐹  ↔  〈 𝑧 ,  𝑤 〉  ∈  ∪  { 𝑔  ∣  ∃ 𝑎 ( 𝑔  Fn  𝑎  ∧  ( 𝑎  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 )  ∧  ∀ 𝑧  ∈  𝑎 ( 𝑔 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) } ) | 
						
							| 10 |  | eluniab | ⊢ ( 〈 𝑧 ,  𝑤 〉  ∈  ∪  { 𝑔  ∣  ∃ 𝑎 ( 𝑔  Fn  𝑎  ∧  ( 𝑎  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 )  ∧  ∀ 𝑧  ∈  𝑎 ( 𝑔 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) }  ↔  ∃ 𝑔 ( 〈 𝑧 ,  𝑤 〉  ∈  𝑔  ∧  ∃ 𝑎 ( 𝑔  Fn  𝑎  ∧  ( 𝑎  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 )  ∧  ∀ 𝑧  ∈  𝑎 ( 𝑔 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) ) ) | 
						
							| 11 | 9 10 | bitri | ⊢ ( 〈 𝑧 ,  𝑤 〉  ∈  𝐹  ↔  ∃ 𝑔 ( 〈 𝑧 ,  𝑤 〉  ∈  𝑔  ∧  ∃ 𝑎 ( 𝑔  Fn  𝑎  ∧  ( 𝑎  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 )  ∧  ∀ 𝑧  ∈  𝑎 ( 𝑔 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) ) ) | 
						
							| 12 |  | simpr2r | ⊢ ( ( 〈 𝑧 ,  𝑤 〉  ∈  𝑔  ∧  ( 𝑔  Fn  𝑎  ∧  ( 𝑎  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 )  ∧  ∀ 𝑧  ∈  𝑎 ( 𝑔 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) )  →  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 ) | 
						
							| 13 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 14 | 3 13 | opeldm | ⊢ ( 〈 𝑧 ,  𝑤 〉  ∈  𝑔  →  𝑧  ∈  dom  𝑔 ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 〈 𝑧 ,  𝑤 〉  ∈  𝑔  ∧  ( 𝑔  Fn  𝑎  ∧  ( 𝑎  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 )  ∧  ∀ 𝑧  ∈  𝑎 ( 𝑔 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) )  →  𝑧  ∈  dom  𝑔 ) | 
						
							| 16 |  | simpr1 | ⊢ ( ( 〈 𝑧 ,  𝑤 〉  ∈  𝑔  ∧  ( 𝑔  Fn  𝑎  ∧  ( 𝑎  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 )  ∧  ∀ 𝑧  ∈  𝑎 ( 𝑔 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) )  →  𝑔  Fn  𝑎 ) | 
						
							| 17 | 16 | fndmd | ⊢ ( ( 〈 𝑧 ,  𝑤 〉  ∈  𝑔  ∧  ( 𝑔  Fn  𝑎  ∧  ( 𝑎  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 )  ∧  ∀ 𝑧  ∈  𝑎 ( 𝑔 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) )  →  dom  𝑔  =  𝑎 ) | 
						
							| 18 | 15 17 | eleqtrd | ⊢ ( ( 〈 𝑧 ,  𝑤 〉  ∈  𝑔  ∧  ( 𝑔  Fn  𝑎  ∧  ( 𝑎  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 )  ∧  ∀ 𝑧  ∈  𝑎 ( 𝑔 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) )  →  𝑧  ∈  𝑎 ) | 
						
							| 19 |  | rsp | ⊢ ( ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎  →  ( 𝑧  ∈  𝑎  →  Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 ) ) | 
						
							| 20 | 12 18 19 | sylc | ⊢ ( ( 〈 𝑧 ,  𝑤 〉  ∈  𝑔  ∧  ( 𝑔  Fn  𝑎  ∧  ( 𝑎  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 )  ∧  ∀ 𝑧  ∈  𝑎 ( 𝑔 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) )  →  Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 ) | 
						
							| 21 | 20 17 | sseqtrrd | ⊢ ( ( 〈 𝑧 ,  𝑤 〉  ∈  𝑔  ∧  ( 𝑔  Fn  𝑎  ∧  ( 𝑎  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 )  ∧  ∀ 𝑧  ∈  𝑎 ( 𝑔 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) )  →  Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  dom  𝑔 ) | 
						
							| 22 |  | 19.8a | ⊢ ( ( 𝑔  Fn  𝑎  ∧  ( 𝑎  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 )  ∧  ∀ 𝑧  ∈  𝑎 ( 𝑔 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) )  →  ∃ 𝑎 ( 𝑔  Fn  𝑎  ∧  ( 𝑎  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 )  ∧  ∀ 𝑧  ∈  𝑎 ( 𝑔 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) ) | 
						
							| 23 | 6 | eqabri | ⊢ ( 𝑔  ∈  𝐵  ↔  ∃ 𝑎 ( 𝑔  Fn  𝑎  ∧  ( 𝑎  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 )  ∧  ∀ 𝑧  ∈  𝑎 ( 𝑔 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) ) | 
						
							| 24 | 22 23 | sylibr | ⊢ ( ( 𝑔  Fn  𝑎  ∧  ( 𝑎  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 )  ∧  ∀ 𝑧  ∈  𝑎 ( 𝑔 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) )  →  𝑔  ∈  𝐵 ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 〈 𝑧 ,  𝑤 〉  ∈  𝑔  ∧  ( 𝑔  Fn  𝑎  ∧  ( 𝑎  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 )  ∧  ∀ 𝑧  ∈  𝑎 ( 𝑔 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) )  →  𝑔  ∈  𝐵 ) | 
						
							| 26 |  | elssuni | ⊢ ( 𝑔  ∈  𝐵  →  𝑔  ⊆  ∪  𝐵 ) | 
						
							| 27 | 25 26 | syl | ⊢ ( ( 〈 𝑧 ,  𝑤 〉  ∈  𝑔  ∧  ( 𝑔  Fn  𝑎  ∧  ( 𝑎  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 )  ∧  ∀ 𝑧  ∈  𝑎 ( 𝑔 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) )  →  𝑔  ⊆  ∪  𝐵 ) | 
						
							| 28 | 27 5 | sseqtrrdi | ⊢ ( ( 〈 𝑧 ,  𝑤 〉  ∈  𝑔  ∧  ( 𝑔  Fn  𝑎  ∧  ( 𝑎  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 )  ∧  ∀ 𝑧  ∈  𝑎 ( 𝑔 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) )  →  𝑔  ⊆  𝐹 ) | 
						
							| 29 |  | dmss | ⊢ ( 𝑔  ⊆  𝐹  →  dom  𝑔  ⊆  dom  𝐹 ) | 
						
							| 30 | 28 29 | syl | ⊢ ( ( 〈 𝑧 ,  𝑤 〉  ∈  𝑔  ∧  ( 𝑔  Fn  𝑎  ∧  ( 𝑎  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 )  ∧  ∀ 𝑧  ∈  𝑎 ( 𝑔 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) )  →  dom  𝑔  ⊆  dom  𝐹 ) | 
						
							| 31 | 21 30 | sstrd | ⊢ ( ( 〈 𝑧 ,  𝑤 〉  ∈  𝑔  ∧  ( 𝑔  Fn  𝑎  ∧  ( 𝑎  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 )  ∧  ∀ 𝑧  ∈  𝑎 ( 𝑔 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) )  →  Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  dom  𝐹 ) | 
						
							| 32 | 31 | expcom | ⊢ ( ( 𝑔  Fn  𝑎  ∧  ( 𝑎  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 )  ∧  ∀ 𝑧  ∈  𝑎 ( 𝑔 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) )  →  ( 〈 𝑧 ,  𝑤 〉  ∈  𝑔  →  Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  dom  𝐹 ) ) | 
						
							| 33 | 32 | exlimiv | ⊢ ( ∃ 𝑎 ( 𝑔  Fn  𝑎  ∧  ( 𝑎  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 )  ∧  ∀ 𝑧  ∈  𝑎 ( 𝑔 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) )  →  ( 〈 𝑧 ,  𝑤 〉  ∈  𝑔  →  Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  dom  𝐹 ) ) | 
						
							| 34 | 33 | impcom | ⊢ ( ( 〈 𝑧 ,  𝑤 〉  ∈  𝑔  ∧  ∃ 𝑎 ( 𝑔  Fn  𝑎  ∧  ( 𝑎  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 )  ∧  ∀ 𝑧  ∈  𝑎 ( 𝑔 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) )  →  Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  dom  𝐹 ) | 
						
							| 35 | 34 | exlimiv | ⊢ ( ∃ 𝑔 ( 〈 𝑧 ,  𝑤 〉  ∈  𝑔  ∧  ∃ 𝑎 ( 𝑔  Fn  𝑎  ∧  ( 𝑎  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝑎 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  𝑎 )  ∧  ∀ 𝑧  ∈  𝑎 ( 𝑔 ‘ 𝑧 )  =  ( 𝑧 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) ) )  →  Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  dom  𝐹 ) | 
						
							| 36 | 11 35 | sylbi | ⊢ ( 〈 𝑧 ,  𝑤 〉  ∈  𝐹  →  Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  dom  𝐹 ) | 
						
							| 37 | 36 | exlimiv | ⊢ ( ∃ 𝑤 〈 𝑧 ,  𝑤 〉  ∈  𝐹  →  Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  dom  𝐹 ) | 
						
							| 38 | 4 37 | sylbi | ⊢ ( 𝑧  ∈  dom  𝐹  →  Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ⊆  dom  𝐹 ) |