| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frrlem9.1 |
⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } |
| 2 |
|
frrlem9.2 |
⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) |
| 3 |
|
frrlem9.3 |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 4 |
|
eluni2 |
⊢ ( 〈 𝑥 , 𝑢 〉 ∈ ∪ 𝐵 ↔ ∃ 𝑔 ∈ 𝐵 〈 𝑥 , 𝑢 〉 ∈ 𝑔 ) |
| 5 |
|
df-br |
⊢ ( 𝑥 𝐹 𝑢 ↔ 〈 𝑥 , 𝑢 〉 ∈ 𝐹 ) |
| 6 |
1 2
|
frrlem5 |
⊢ 𝐹 = ∪ 𝐵 |
| 7 |
6
|
eleq2i |
⊢ ( 〈 𝑥 , 𝑢 〉 ∈ 𝐹 ↔ 〈 𝑥 , 𝑢 〉 ∈ ∪ 𝐵 ) |
| 8 |
5 7
|
bitri |
⊢ ( 𝑥 𝐹 𝑢 ↔ 〈 𝑥 , 𝑢 〉 ∈ ∪ 𝐵 ) |
| 9 |
|
df-br |
⊢ ( 𝑥 𝑔 𝑢 ↔ 〈 𝑥 , 𝑢 〉 ∈ 𝑔 ) |
| 10 |
9
|
rexbii |
⊢ ( ∃ 𝑔 ∈ 𝐵 𝑥 𝑔 𝑢 ↔ ∃ 𝑔 ∈ 𝐵 〈 𝑥 , 𝑢 〉 ∈ 𝑔 ) |
| 11 |
4 8 10
|
3bitr4i |
⊢ ( 𝑥 𝐹 𝑢 ↔ ∃ 𝑔 ∈ 𝐵 𝑥 𝑔 𝑢 ) |
| 12 |
|
eluni2 |
⊢ ( 〈 𝑥 , 𝑣 〉 ∈ ∪ 𝐵 ↔ ∃ ℎ ∈ 𝐵 〈 𝑥 , 𝑣 〉 ∈ ℎ ) |
| 13 |
|
df-br |
⊢ ( 𝑥 𝐹 𝑣 ↔ 〈 𝑥 , 𝑣 〉 ∈ 𝐹 ) |
| 14 |
6
|
eleq2i |
⊢ ( 〈 𝑥 , 𝑣 〉 ∈ 𝐹 ↔ 〈 𝑥 , 𝑣 〉 ∈ ∪ 𝐵 ) |
| 15 |
13 14
|
bitri |
⊢ ( 𝑥 𝐹 𝑣 ↔ 〈 𝑥 , 𝑣 〉 ∈ ∪ 𝐵 ) |
| 16 |
|
df-br |
⊢ ( 𝑥 ℎ 𝑣 ↔ 〈 𝑥 , 𝑣 〉 ∈ ℎ ) |
| 17 |
16
|
rexbii |
⊢ ( ∃ ℎ ∈ 𝐵 𝑥 ℎ 𝑣 ↔ ∃ ℎ ∈ 𝐵 〈 𝑥 , 𝑣 〉 ∈ ℎ ) |
| 18 |
12 15 17
|
3bitr4i |
⊢ ( 𝑥 𝐹 𝑣 ↔ ∃ ℎ ∈ 𝐵 𝑥 ℎ 𝑣 ) |
| 19 |
11 18
|
anbi12i |
⊢ ( ( 𝑥 𝐹 𝑢 ∧ 𝑥 𝐹 𝑣 ) ↔ ( ∃ 𝑔 ∈ 𝐵 𝑥 𝑔 𝑢 ∧ ∃ ℎ ∈ 𝐵 𝑥 ℎ 𝑣 ) ) |
| 20 |
|
reeanv |
⊢ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐵 ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) ↔ ( ∃ 𝑔 ∈ 𝐵 𝑥 𝑔 𝑢 ∧ ∃ ℎ ∈ 𝐵 𝑥 ℎ 𝑣 ) ) |
| 21 |
19 20
|
bitr4i |
⊢ ( ( 𝑥 𝐹 𝑢 ∧ 𝑥 𝐹 𝑣 ) ↔ ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐵 ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) ) |
| 22 |
3
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐵 ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 23 |
21 22
|
biimtrid |
⊢ ( 𝜑 → ( ( 𝑥 𝐹 𝑢 ∧ 𝑥 𝐹 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 24 |
23
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑣 ( ( 𝑥 𝐹 𝑢 ∧ 𝑥 𝐹 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 25 |
24
|
alrimivv |
⊢ ( 𝜑 → ∀ 𝑥 ∀ 𝑢 ∀ 𝑣 ( ( 𝑥 𝐹 𝑢 ∧ 𝑥 𝐹 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 26 |
1 2
|
frrlem6 |
⊢ Rel 𝐹 |
| 27 |
|
dffun2 |
⊢ ( Fun 𝐹 ↔ ( Rel 𝐹 ∧ ∀ 𝑥 ∀ 𝑢 ∀ 𝑣 ( ( 𝑥 𝐹 𝑢 ∧ 𝑥 𝐹 𝑣 ) → 𝑢 = 𝑣 ) ) ) |
| 28 |
26 27
|
mpbiran |
⊢ ( Fun 𝐹 ↔ ∀ 𝑥 ∀ 𝑢 ∀ 𝑣 ( ( 𝑥 𝐹 𝑢 ∧ 𝑥 𝐹 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 29 |
25 28
|
sylibr |
⊢ ( 𝜑 → Fun 𝐹 ) |