Step |
Hyp |
Ref |
Expression |
1 |
|
frrusgrord0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
rusgrrgr |
⊢ ( 𝐺 RegUSGraph 𝐾 → 𝐺 RegGraph 𝐾 ) |
3 |
|
eqid |
⊢ ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 ) |
4 |
1 3
|
rgrprop |
⊢ ( 𝐺 RegGraph 𝐾 → ( 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) ) |
5 |
2 4
|
syl |
⊢ ( 𝐺 RegUSGraph 𝐾 → ( 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) ) |
6 |
5
|
simprd |
⊢ ( 𝐺 RegUSGraph 𝐾 → ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) |
7 |
1
|
frrusgrord0 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( ♯ ‘ 𝑉 ) = ( ( 𝐾 · ( 𝐾 − 1 ) ) + 1 ) ) ) |
8 |
6 7
|
syl5 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( 𝐺 RegUSGraph 𝐾 → ( ♯ ‘ 𝑉 ) = ( ( 𝐾 · ( 𝐾 − 1 ) ) + 1 ) ) ) |
9 |
8
|
3expb |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ) → ( 𝐺 RegUSGraph 𝐾 → ( ♯ ‘ 𝑉 ) = ( ( 𝐾 · ( 𝐾 − 1 ) ) + 1 ) ) ) |
10 |
9
|
expcom |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( 𝐺 ∈ FriendGraph → ( 𝐺 RegUSGraph 𝐾 → ( ♯ ‘ 𝑉 ) = ( ( 𝐾 · ( 𝐾 − 1 ) ) + 1 ) ) ) ) |
11 |
10
|
impd |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) → ( ♯ ‘ 𝑉 ) = ( ( 𝐾 · ( 𝐾 − 1 ) ) + 1 ) ) ) |