Step |
Hyp |
Ref |
Expression |
1 |
|
frrusgrord0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
frgrusgr |
⊢ ( 𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph ) |
3 |
2
|
anim1i |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ) → ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin ) ) |
4 |
1
|
isfusgr |
⊢ ( 𝐺 ∈ FinUSGraph ↔ ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin ) ) |
5 |
3 4
|
sylibr |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ) → 𝐺 ∈ FinUSGraph ) |
6 |
|
eqid |
⊢ ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 ) |
7 |
1 6
|
fusgrregdegfi |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → 𝐾 ∈ ℕ0 ) ) |
8 |
5 7
|
stoic3 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → 𝐾 ∈ ℕ0 ) ) |
9 |
8
|
imp |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) → 𝐾 ∈ ℕ0 ) |
10 |
9
|
nn0cnd |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) → 𝐾 ∈ ℂ ) |
11 |
|
hashcl |
⊢ ( 𝑉 ∈ Fin → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) |
12 |
11
|
nn0cnd |
⊢ ( 𝑉 ∈ Fin → ( ♯ ‘ 𝑉 ) ∈ ℂ ) |
13 |
12
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ♯ ‘ 𝑉 ) ∈ ℂ ) |
14 |
13
|
adantr |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) → ( ♯ ‘ 𝑉 ) ∈ ℂ ) |
15 |
|
hasheq0 |
⊢ ( 𝑉 ∈ Fin → ( ( ♯ ‘ 𝑉 ) = 0 ↔ 𝑉 = ∅ ) ) |
16 |
15
|
biimpd |
⊢ ( 𝑉 ∈ Fin → ( ( ♯ ‘ 𝑉 ) = 0 → 𝑉 = ∅ ) ) |
17 |
16
|
necon3d |
⊢ ( 𝑉 ∈ Fin → ( 𝑉 ≠ ∅ → ( ♯ ‘ 𝑉 ) ≠ 0 ) ) |
18 |
17
|
imp |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ♯ ‘ 𝑉 ) ≠ 0 ) |
19 |
18
|
3adant1 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ♯ ‘ 𝑉 ) ≠ 0 ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) → ( ♯ ‘ 𝑉 ) ≠ 0 ) |
21 |
10 14 20
|
3jca |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) → ( 𝐾 ∈ ℂ ∧ ( ♯ ‘ 𝑉 ) ∈ ℂ ∧ ( ♯ ‘ 𝑉 ) ≠ 0 ) ) |