Step |
Hyp |
Ref |
Expression |
1 |
|
snprc |
⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) |
2 |
|
fr0 |
⊢ 𝑅 Fr ∅ |
3 |
|
freq2 |
⊢ ( { 𝐴 } = ∅ → ( 𝑅 Fr { 𝐴 } ↔ 𝑅 Fr ∅ ) ) |
4 |
2 3
|
mpbiri |
⊢ ( { 𝐴 } = ∅ → 𝑅 Fr { 𝐴 } ) |
5 |
1 4
|
sylbi |
⊢ ( ¬ 𝐴 ∈ V → 𝑅 Fr { 𝐴 } ) |
6 |
5
|
adantl |
⊢ ( ( Rel 𝑅 ∧ ¬ 𝐴 ∈ V ) → 𝑅 Fr { 𝐴 } ) |
7 |
|
brrelex1 |
⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝐴 ) → 𝐴 ∈ V ) |
8 |
7
|
stoic1a |
⊢ ( ( Rel 𝑅 ∧ ¬ 𝐴 ∈ V ) → ¬ 𝐴 𝑅 𝐴 ) |
9 |
6 8
|
2thd |
⊢ ( ( Rel 𝑅 ∧ ¬ 𝐴 ∈ V ) → ( 𝑅 Fr { 𝐴 } ↔ ¬ 𝐴 𝑅 𝐴 ) ) |
10 |
9
|
ex |
⊢ ( Rel 𝑅 → ( ¬ 𝐴 ∈ V → ( 𝑅 Fr { 𝐴 } ↔ ¬ 𝐴 𝑅 𝐴 ) ) ) |
11 |
|
df-fr |
⊢ ( 𝑅 Fr { 𝐴 } ↔ ∀ 𝑥 ( ( 𝑥 ⊆ { 𝐴 } ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
12 |
|
sssn |
⊢ ( 𝑥 ⊆ { 𝐴 } ↔ ( 𝑥 = ∅ ∨ 𝑥 = { 𝐴 } ) ) |
13 |
|
neor |
⊢ ( ( 𝑥 = ∅ ∨ 𝑥 = { 𝐴 } ) ↔ ( 𝑥 ≠ ∅ → 𝑥 = { 𝐴 } ) ) |
14 |
12 13
|
sylbb |
⊢ ( 𝑥 ⊆ { 𝐴 } → ( 𝑥 ≠ ∅ → 𝑥 = { 𝐴 } ) ) |
15 |
14
|
imp |
⊢ ( ( 𝑥 ⊆ { 𝐴 } ∧ 𝑥 ≠ ∅ ) → 𝑥 = { 𝐴 } ) |
16 |
15
|
adantl |
⊢ ( ( 𝐴 ∈ V ∧ ( 𝑥 ⊆ { 𝐴 } ∧ 𝑥 ≠ ∅ ) ) → 𝑥 = { 𝐴 } ) |
17 |
|
eqimss |
⊢ ( 𝑥 = { 𝐴 } → 𝑥 ⊆ { 𝐴 } ) |
18 |
17
|
adantl |
⊢ ( ( 𝐴 ∈ V ∧ 𝑥 = { 𝐴 } ) → 𝑥 ⊆ { 𝐴 } ) |
19 |
|
snnzg |
⊢ ( 𝐴 ∈ V → { 𝐴 } ≠ ∅ ) |
20 |
|
neeq1 |
⊢ ( 𝑥 = { 𝐴 } → ( 𝑥 ≠ ∅ ↔ { 𝐴 } ≠ ∅ ) ) |
21 |
19 20
|
syl5ibrcom |
⊢ ( 𝐴 ∈ V → ( 𝑥 = { 𝐴 } → 𝑥 ≠ ∅ ) ) |
22 |
21
|
imp |
⊢ ( ( 𝐴 ∈ V ∧ 𝑥 = { 𝐴 } ) → 𝑥 ≠ ∅ ) |
23 |
18 22
|
jca |
⊢ ( ( 𝐴 ∈ V ∧ 𝑥 = { 𝐴 } ) → ( 𝑥 ⊆ { 𝐴 } ∧ 𝑥 ≠ ∅ ) ) |
24 |
16 23
|
impbida |
⊢ ( 𝐴 ∈ V → ( ( 𝑥 ⊆ { 𝐴 } ∧ 𝑥 ≠ ∅ ) ↔ 𝑥 = { 𝐴 } ) ) |
25 |
24
|
imbi1d |
⊢ ( 𝐴 ∈ V → ( ( ( 𝑥 ⊆ { 𝐴 } ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ↔ ( 𝑥 = { 𝐴 } → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) ) |
26 |
25
|
albidv |
⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 ( ( 𝑥 ⊆ { 𝐴 } ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 = { 𝐴 } → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) ) |
27 |
|
snex |
⊢ { 𝐴 } ∈ V |
28 |
|
raleq |
⊢ ( 𝑥 = { 𝐴 } → ( ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ↔ ∀ 𝑧 ∈ { 𝐴 } ¬ 𝑧 𝑅 𝑦 ) ) |
29 |
28
|
rexeqbi1dv |
⊢ ( 𝑥 = { 𝐴 } → ( ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ↔ ∃ 𝑦 ∈ { 𝐴 } ∀ 𝑧 ∈ { 𝐴 } ¬ 𝑧 𝑅 𝑦 ) ) |
30 |
27 29
|
ceqsalv |
⊢ ( ∀ 𝑥 ( 𝑥 = { 𝐴 } → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ↔ ∃ 𝑦 ∈ { 𝐴 } ∀ 𝑧 ∈ { 𝐴 } ¬ 𝑧 𝑅 𝑦 ) |
31 |
26 30
|
bitrdi |
⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 ( ( 𝑥 ⊆ { 𝐴 } ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ↔ ∃ 𝑦 ∈ { 𝐴 } ∀ 𝑧 ∈ { 𝐴 } ¬ 𝑧 𝑅 𝑦 ) ) |
32 |
11 31
|
syl5bb |
⊢ ( 𝐴 ∈ V → ( 𝑅 Fr { 𝐴 } ↔ ∃ 𝑦 ∈ { 𝐴 } ∀ 𝑧 ∈ { 𝐴 } ¬ 𝑧 𝑅 𝑦 ) ) |
33 |
|
breq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑧 𝑅 𝑦 ↔ 𝑧 𝑅 𝐴 ) ) |
34 |
33
|
notbid |
⊢ ( 𝑦 = 𝐴 → ( ¬ 𝑧 𝑅 𝑦 ↔ ¬ 𝑧 𝑅 𝐴 ) ) |
35 |
34
|
ralbidv |
⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑧 ∈ { 𝐴 } ¬ 𝑧 𝑅 𝑦 ↔ ∀ 𝑧 ∈ { 𝐴 } ¬ 𝑧 𝑅 𝐴 ) ) |
36 |
35
|
rexsng |
⊢ ( 𝐴 ∈ V → ( ∃ 𝑦 ∈ { 𝐴 } ∀ 𝑧 ∈ { 𝐴 } ¬ 𝑧 𝑅 𝑦 ↔ ∀ 𝑧 ∈ { 𝐴 } ¬ 𝑧 𝑅 𝐴 ) ) |
37 |
|
breq1 |
⊢ ( 𝑧 = 𝐴 → ( 𝑧 𝑅 𝐴 ↔ 𝐴 𝑅 𝐴 ) ) |
38 |
37
|
notbid |
⊢ ( 𝑧 = 𝐴 → ( ¬ 𝑧 𝑅 𝐴 ↔ ¬ 𝐴 𝑅 𝐴 ) ) |
39 |
38
|
ralsng |
⊢ ( 𝐴 ∈ V → ( ∀ 𝑧 ∈ { 𝐴 } ¬ 𝑧 𝑅 𝐴 ↔ ¬ 𝐴 𝑅 𝐴 ) ) |
40 |
32 36 39
|
3bitrd |
⊢ ( 𝐴 ∈ V → ( 𝑅 Fr { 𝐴 } ↔ ¬ 𝐴 𝑅 𝐴 ) ) |
41 |
10 40
|
pm2.61d2 |
⊢ ( Rel 𝑅 → ( 𝑅 Fr { 𝐴 } ↔ ¬ 𝐴 𝑅 𝐴 ) ) |