Step |
Hyp |
Ref |
Expression |
1 |
|
sstr2 |
⊢ ( 𝑥 ⊆ 𝐴 → ( 𝐴 ⊆ 𝐵 → 𝑥 ⊆ 𝐵 ) ) |
2 |
1
|
com12 |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵 ) ) |
3 |
2
|
anim1d |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ( 𝑥 ⊆ 𝐵 ∧ 𝑥 ≠ ∅ ) ) ) |
4 |
3
|
imim1d |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( ( 𝑥 ⊆ 𝐵 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) ) |
5 |
4
|
alimdv |
⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ( ( 𝑥 ⊆ 𝐵 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) → ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) ) |
6 |
|
df-fr |
⊢ ( 𝑅 Fr 𝐵 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐵 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
7 |
|
df-fr |
⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
8 |
5 6 7
|
3imtr4g |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑅 Fr 𝐵 → 𝑅 Fr 𝐴 ) ) |