Metamath Proof Explorer


Theorem frss

Description: Subset theorem for the well-founded predicate. Exercise 1 of TakeutiZaring p. 31. (Contributed by NM, 3-Apr-1994) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion frss ( 𝐴𝐵 → ( 𝑅 Fr 𝐵𝑅 Fr 𝐴 ) )

Proof

Step Hyp Ref Expression
1 sstr2 ( 𝑥𝐴 → ( 𝐴𝐵𝑥𝐵 ) )
2 1 com12 ( 𝐴𝐵 → ( 𝑥𝐴𝑥𝐵 ) )
3 2 anim1d ( 𝐴𝐵 → ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ( 𝑥𝐵𝑥 ≠ ∅ ) ) )
4 3 imim1d ( 𝐴𝐵 → ( ( ( 𝑥𝐵𝑥 ≠ ∅ ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) → ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) ) )
5 4 alimdv ( 𝐴𝐵 → ( ∀ 𝑥 ( ( 𝑥𝐵𝑥 ≠ ∅ ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) → ∀ 𝑥 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) ) )
6 df-fr ( 𝑅 Fr 𝐵 ↔ ∀ 𝑥 ( ( 𝑥𝐵𝑥 ≠ ∅ ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) )
7 df-fr ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥𝑧𝑥 ¬ 𝑧 𝑅 𝑦 ) )
8 5 6 7 3imtr4g ( 𝐴𝐵 → ( 𝑅 Fr 𝐵𝑅 Fr 𝐴 ) )