Step |
Hyp |
Ref |
Expression |
1 |
|
frsucmpt.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
frsucmpt.2 |
⊢ Ⅎ 𝑥 𝐵 |
3 |
|
frsucmpt.3 |
⊢ Ⅎ 𝑥 𝐷 |
4 |
|
frsucmpt.4 |
⊢ 𝐹 = ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) |
5 |
|
frsucmpt.5 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝐵 ) → 𝐶 = 𝐷 ) |
6 |
4
|
fveq1i |
⊢ ( 𝐹 ‘ suc 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) |
7 |
|
frfnom |
⊢ ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) Fn ω |
8 |
|
fndm |
⊢ ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) Fn ω → dom ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) = ω ) |
9 |
7 8
|
ax-mp |
⊢ dom ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) = ω |
10 |
9
|
eleq2i |
⊢ ( suc 𝐵 ∈ dom ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ↔ suc 𝐵 ∈ ω ) |
11 |
|
peano2b |
⊢ ( 𝐵 ∈ ω ↔ suc 𝐵 ∈ ω ) |
12 |
|
frsuc |
⊢ ( 𝐵 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ 𝐵 ) ) ) |
13 |
4
|
fveq1i |
⊢ ( 𝐹 ‘ 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ 𝐵 ) |
14 |
13
|
fveq2i |
⊢ ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) ) = ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ 𝐵 ) ) |
15 |
12 14
|
eqtr4di |
⊢ ( 𝐵 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
16 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ V ↦ 𝐶 ) |
17 |
16 1
|
nfrdg |
⊢ Ⅎ 𝑥 rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) |
18 |
|
nfcv |
⊢ Ⅎ 𝑥 ω |
19 |
17 18
|
nfres |
⊢ Ⅎ 𝑥 ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) |
20 |
4 19
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐹 |
21 |
20 2
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝐵 ) |
22 |
|
eqid |
⊢ ( 𝑥 ∈ V ↦ 𝐶 ) = ( 𝑥 ∈ V ↦ 𝐶 ) |
23 |
21 3 5 22
|
fvmptnf |
⊢ ( ¬ 𝐷 ∈ V → ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) ) = ∅ ) |
24 |
15 23
|
sylan9eqr |
⊢ ( ( ¬ 𝐷 ∈ V ∧ 𝐵 ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ∅ ) |
25 |
24
|
ex |
⊢ ( ¬ 𝐷 ∈ V → ( 𝐵 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ∅ ) ) |
26 |
11 25
|
syl5bir |
⊢ ( ¬ 𝐷 ∈ V → ( suc 𝐵 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ∅ ) ) |
27 |
10 26
|
syl5bi |
⊢ ( ¬ 𝐷 ∈ V → ( suc 𝐵 ∈ dom ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ∅ ) ) |
28 |
|
ndmfv |
⊢ ( ¬ suc 𝐵 ∈ dom ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ∅ ) |
29 |
27 28
|
pm2.61d1 |
⊢ ( ¬ 𝐷 ∈ V → ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ∅ ) |
30 |
6 29
|
eqtrid |
⊢ ( ¬ 𝐷 ∈ V → ( 𝐹 ‘ suc 𝐵 ) = ∅ ) |