| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							frsucmpt.1 | 
							⊢ Ⅎ 𝑥 𝐴  | 
						
						
							| 2 | 
							
								
							 | 
							frsucmpt.2 | 
							⊢ Ⅎ 𝑥 𝐵  | 
						
						
							| 3 | 
							
								
							 | 
							frsucmpt.3 | 
							⊢ Ⅎ 𝑥 𝐷  | 
						
						
							| 4 | 
							
								
							 | 
							frsucmpt.4 | 
							⊢ 𝐹  =  ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  ↾  ω )  | 
						
						
							| 5 | 
							
								
							 | 
							frsucmpt.5 | 
							⊢ ( 𝑥  =  ( 𝐹 ‘ 𝐵 )  →  𝐶  =  𝐷 )  | 
						
						
							| 6 | 
							
								4
							 | 
							fveq1i | 
							⊢ ( 𝐹 ‘ suc  𝐵 )  =  ( ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  ↾  ω ) ‘ suc  𝐵 )  | 
						
						
							| 7 | 
							
								
							 | 
							frfnom | 
							⊢ ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  ↾  ω )  Fn  ω  | 
						
						
							| 8 | 
							
								
							 | 
							fndm | 
							⊢ ( ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  ↾  ω )  Fn  ω  →  dom  ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  ↾  ω )  =  ω )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							ax-mp | 
							⊢ dom  ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  ↾  ω )  =  ω  | 
						
						
							| 10 | 
							
								9
							 | 
							eleq2i | 
							⊢ ( suc  𝐵  ∈  dom  ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  ↾  ω )  ↔  suc  𝐵  ∈  ω )  | 
						
						
							| 11 | 
							
								
							 | 
							peano2b | 
							⊢ ( 𝐵  ∈  ω  ↔  suc  𝐵  ∈  ω )  | 
						
						
							| 12 | 
							
								
							 | 
							frsuc | 
							⊢ ( 𝐵  ∈  ω  →  ( ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  ↾  ω ) ‘ suc  𝐵 )  =  ( ( 𝑥  ∈  V  ↦  𝐶 ) ‘ ( ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  ↾  ω ) ‘ 𝐵 ) ) )  | 
						
						
							| 13 | 
							
								4
							 | 
							fveq1i | 
							⊢ ( 𝐹 ‘ 𝐵 )  =  ( ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  ↾  ω ) ‘ 𝐵 )  | 
						
						
							| 14 | 
							
								13
							 | 
							fveq2i | 
							⊢ ( ( 𝑥  ∈  V  ↦  𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) )  =  ( ( 𝑥  ∈  V  ↦  𝐶 ) ‘ ( ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  ↾  ω ) ‘ 𝐵 ) )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							eqtr4di | 
							⊢ ( 𝐵  ∈  ω  →  ( ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  ↾  ω ) ‘ suc  𝐵 )  =  ( ( 𝑥  ∈  V  ↦  𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							nfmpt1 | 
							⊢ Ⅎ 𝑥 ( 𝑥  ∈  V  ↦  𝐶 )  | 
						
						
							| 17 | 
							
								16 1
							 | 
							nfrdg | 
							⊢ Ⅎ 𝑥 rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  | 
						
						
							| 18 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑥 ω  | 
						
						
							| 19 | 
							
								17 18
							 | 
							nfres | 
							⊢ Ⅎ 𝑥 ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  ↾  ω )  | 
						
						
							| 20 | 
							
								4 19
							 | 
							nfcxfr | 
							⊢ Ⅎ 𝑥 𝐹  | 
						
						
							| 21 | 
							
								20 2
							 | 
							nffv | 
							⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝐵 )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  V  ↦  𝐶 )  =  ( 𝑥  ∈  V  ↦  𝐶 )  | 
						
						
							| 23 | 
							
								21 3 5 22
							 | 
							fvmptnf | 
							⊢ ( ¬  𝐷  ∈  V  →  ( ( 𝑥  ∈  V  ↦  𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) )  =  ∅ )  | 
						
						
							| 24 | 
							
								15 23
							 | 
							sylan9eqr | 
							⊢ ( ( ¬  𝐷  ∈  V  ∧  𝐵  ∈  ω )  →  ( ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  ↾  ω ) ‘ suc  𝐵 )  =  ∅ )  | 
						
						
							| 25 | 
							
								24
							 | 
							ex | 
							⊢ ( ¬  𝐷  ∈  V  →  ( 𝐵  ∈  ω  →  ( ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  ↾  ω ) ‘ suc  𝐵 )  =  ∅ ) )  | 
						
						
							| 26 | 
							
								11 25
							 | 
							biimtrrid | 
							⊢ ( ¬  𝐷  ∈  V  →  ( suc  𝐵  ∈  ω  →  ( ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  ↾  ω ) ‘ suc  𝐵 )  =  ∅ ) )  | 
						
						
							| 27 | 
							
								10 26
							 | 
							biimtrid | 
							⊢ ( ¬  𝐷  ∈  V  →  ( suc  𝐵  ∈  dom  ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  ↾  ω )  →  ( ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  ↾  ω ) ‘ suc  𝐵 )  =  ∅ ) )  | 
						
						
							| 28 | 
							
								
							 | 
							ndmfv | 
							⊢ ( ¬  suc  𝐵  ∈  dom  ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  ↾  ω )  →  ( ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  ↾  ω ) ‘ suc  𝐵 )  =  ∅ )  | 
						
						
							| 29 | 
							
								27 28
							 | 
							pm2.61d1 | 
							⊢ ( ¬  𝐷  ∈  V  →  ( ( rec ( ( 𝑥  ∈  V  ↦  𝐶 ) ,  𝐴 )  ↾  ω ) ‘ suc  𝐵 )  =  ∅ )  | 
						
						
							| 30 | 
							
								6 29
							 | 
							eqtrid | 
							⊢ ( ¬  𝐷  ∈  V  →  ( 𝐹 ‘ suc  𝐵 )  =  ∅ )  |