Step |
Hyp |
Ref |
Expression |
1 |
|
frxp.1 |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) } |
2 |
|
ssn0 |
⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ( 𝐴 × 𝐵 ) ≠ ∅ ) |
3 |
|
xpnz |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ↔ ( 𝐴 × 𝐵 ) ≠ ∅ ) |
4 |
3
|
biimpri |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ) |
5 |
4
|
simprd |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → 𝐵 ≠ ∅ ) |
6 |
2 5
|
syl |
⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → 𝐵 ≠ ∅ ) |
7 |
|
dmxp |
⊢ ( 𝐵 ≠ ∅ → dom ( 𝐴 × 𝐵 ) = 𝐴 ) |
8 |
|
dmss |
⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → dom 𝑠 ⊆ dom ( 𝐴 × 𝐵 ) ) |
9 |
|
sseq2 |
⊢ ( dom ( 𝐴 × 𝐵 ) = 𝐴 → ( dom 𝑠 ⊆ dom ( 𝐴 × 𝐵 ) ↔ dom 𝑠 ⊆ 𝐴 ) ) |
10 |
8 9
|
syl5ib |
⊢ ( dom ( 𝐴 × 𝐵 ) = 𝐴 → ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → dom 𝑠 ⊆ 𝐴 ) ) |
11 |
7 10
|
syl |
⊢ ( 𝐵 ≠ ∅ → ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → dom 𝑠 ⊆ 𝐴 ) ) |
12 |
11
|
impcom |
⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝐵 ≠ ∅ ) → dom 𝑠 ⊆ 𝐴 ) |
13 |
6 12
|
syldan |
⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → dom 𝑠 ⊆ 𝐴 ) |
14 |
|
relxp |
⊢ Rel ( 𝐴 × 𝐵 ) |
15 |
|
relss |
⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ( Rel ( 𝐴 × 𝐵 ) → Rel 𝑠 ) ) |
16 |
14 15
|
mpi |
⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → Rel 𝑠 ) |
17 |
|
reldm0 |
⊢ ( Rel 𝑠 → ( 𝑠 = ∅ ↔ dom 𝑠 = ∅ ) ) |
18 |
16 17
|
syl |
⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ( 𝑠 = ∅ ↔ dom 𝑠 = ∅ ) ) |
19 |
18
|
necon3bid |
⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ( 𝑠 ≠ ∅ ↔ dom 𝑠 ≠ ∅ ) ) |
20 |
19
|
biimpa |
⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → dom 𝑠 ≠ ∅ ) |
21 |
13 20
|
jca |
⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ( dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅ ) ) |
22 |
|
df-fr |
⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑣 ( ( 𝑣 ⊆ 𝐴 ∧ 𝑣 ≠ ∅ ) → ∃ 𝑎 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ¬ 𝑐 𝑅 𝑎 ) ) |
23 |
|
vex |
⊢ 𝑠 ∈ V |
24 |
23
|
dmex |
⊢ dom 𝑠 ∈ V |
25 |
|
sseq1 |
⊢ ( 𝑣 = dom 𝑠 → ( 𝑣 ⊆ 𝐴 ↔ dom 𝑠 ⊆ 𝐴 ) ) |
26 |
|
neeq1 |
⊢ ( 𝑣 = dom 𝑠 → ( 𝑣 ≠ ∅ ↔ dom 𝑠 ≠ ∅ ) ) |
27 |
25 26
|
anbi12d |
⊢ ( 𝑣 = dom 𝑠 → ( ( 𝑣 ⊆ 𝐴 ∧ 𝑣 ≠ ∅ ) ↔ ( dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅ ) ) ) |
28 |
|
raleq |
⊢ ( 𝑣 = dom 𝑠 → ( ∀ 𝑐 ∈ 𝑣 ¬ 𝑐 𝑅 𝑎 ↔ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ) |
29 |
28
|
rexeqbi1dv |
⊢ ( 𝑣 = dom 𝑠 → ( ∃ 𝑎 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ¬ 𝑐 𝑅 𝑎 ↔ ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ) |
30 |
27 29
|
imbi12d |
⊢ ( 𝑣 = dom 𝑠 → ( ( ( 𝑣 ⊆ 𝐴 ∧ 𝑣 ≠ ∅ ) → ∃ 𝑎 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ¬ 𝑐 𝑅 𝑎 ) ↔ ( ( dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅ ) → ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ) ) |
31 |
24 30
|
spcv |
⊢ ( ∀ 𝑣 ( ( 𝑣 ⊆ 𝐴 ∧ 𝑣 ≠ ∅ ) → ∃ 𝑎 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ¬ 𝑐 𝑅 𝑎 ) → ( ( dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅ ) → ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ) |
32 |
22 31
|
sylbi |
⊢ ( 𝑅 Fr 𝐴 → ( ( dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅ ) → ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ) |
33 |
21 32
|
syl5 |
⊢ ( 𝑅 Fr 𝐴 → ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑆 Fr 𝐵 ) → ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ) |
35 |
|
imassrn |
⊢ ( 𝑠 “ { 𝑎 } ) ⊆ ran 𝑠 |
36 |
|
xpeq0 |
⊢ ( ( 𝐴 × 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) |
37 |
36
|
biimpri |
⊢ ( ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) → ( 𝐴 × 𝐵 ) = ∅ ) |
38 |
37
|
orcs |
⊢ ( 𝐴 = ∅ → ( 𝐴 × 𝐵 ) = ∅ ) |
39 |
|
sseq2 |
⊢ ( ( 𝐴 × 𝐵 ) = ∅ → ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ↔ 𝑠 ⊆ ∅ ) ) |
40 |
|
ss0 |
⊢ ( 𝑠 ⊆ ∅ → 𝑠 = ∅ ) |
41 |
39 40
|
syl6bi |
⊢ ( ( 𝐴 × 𝐵 ) = ∅ → ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → 𝑠 = ∅ ) ) |
42 |
38 41
|
syl |
⊢ ( 𝐴 = ∅ → ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → 𝑠 = ∅ ) ) |
43 |
|
rneq |
⊢ ( 𝑠 = ∅ → ran 𝑠 = ran ∅ ) |
44 |
|
rn0 |
⊢ ran ∅ = ∅ |
45 |
|
0ss |
⊢ ∅ ⊆ 𝐵 |
46 |
44 45
|
eqsstri |
⊢ ran ∅ ⊆ 𝐵 |
47 |
43 46
|
eqsstrdi |
⊢ ( 𝑠 = ∅ → ran 𝑠 ⊆ 𝐵 ) |
48 |
42 47
|
syl6 |
⊢ ( 𝐴 = ∅ → ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ran 𝑠 ⊆ 𝐵 ) ) |
49 |
|
rnxp |
⊢ ( 𝐴 ≠ ∅ → ran ( 𝐴 × 𝐵 ) = 𝐵 ) |
50 |
|
rnss |
⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ran 𝑠 ⊆ ran ( 𝐴 × 𝐵 ) ) |
51 |
|
sseq2 |
⊢ ( ran ( 𝐴 × 𝐵 ) = 𝐵 → ( ran 𝑠 ⊆ ran ( 𝐴 × 𝐵 ) ↔ ran 𝑠 ⊆ 𝐵 ) ) |
52 |
50 51
|
syl5ib |
⊢ ( ran ( 𝐴 × 𝐵 ) = 𝐵 → ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ran 𝑠 ⊆ 𝐵 ) ) |
53 |
49 52
|
syl |
⊢ ( 𝐴 ≠ ∅ → ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ran 𝑠 ⊆ 𝐵 ) ) |
54 |
48 53
|
pm2.61ine |
⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ran 𝑠 ⊆ 𝐵 ) |
55 |
35 54
|
sstrid |
⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ( 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ) |
56 |
|
vex |
⊢ 𝑎 ∈ V |
57 |
56
|
eldm |
⊢ ( 𝑎 ∈ dom 𝑠 ↔ ∃ 𝑏 𝑎 𝑠 𝑏 ) |
58 |
|
vex |
⊢ 𝑏 ∈ V |
59 |
56 58
|
elimasn |
⊢ ( 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ↔ 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ) |
60 |
|
df-br |
⊢ ( 𝑎 𝑠 𝑏 ↔ 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ) |
61 |
59 60
|
bitr4i |
⊢ ( 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ↔ 𝑎 𝑠 𝑏 ) |
62 |
|
ne0i |
⊢ ( 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) → ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) |
63 |
61 62
|
sylbir |
⊢ ( 𝑎 𝑠 𝑏 → ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) |
64 |
63
|
exlimiv |
⊢ ( ∃ 𝑏 𝑎 𝑠 𝑏 → ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) |
65 |
57 64
|
sylbi |
⊢ ( 𝑎 ∈ dom 𝑠 → ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) |
66 |
|
df-fr |
⊢ ( 𝑆 Fr 𝐵 ↔ ∀ 𝑣 ( ( 𝑣 ⊆ 𝐵 ∧ 𝑣 ≠ ∅ ) → ∃ 𝑏 ∈ 𝑣 ∀ 𝑑 ∈ 𝑣 ¬ 𝑑 𝑆 𝑏 ) ) |
67 |
23
|
imaex |
⊢ ( 𝑠 “ { 𝑎 } ) ∈ V |
68 |
|
sseq1 |
⊢ ( 𝑣 = ( 𝑠 “ { 𝑎 } ) → ( 𝑣 ⊆ 𝐵 ↔ ( 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ) ) |
69 |
|
neeq1 |
⊢ ( 𝑣 = ( 𝑠 “ { 𝑎 } ) → ( 𝑣 ≠ ∅ ↔ ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) ) |
70 |
68 69
|
anbi12d |
⊢ ( 𝑣 = ( 𝑠 “ { 𝑎 } ) → ( ( 𝑣 ⊆ 𝐵 ∧ 𝑣 ≠ ∅ ) ↔ ( ( 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ∧ ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) ) ) |
71 |
|
raleq |
⊢ ( 𝑣 = ( 𝑠 “ { 𝑎 } ) → ( ∀ 𝑑 ∈ 𝑣 ¬ 𝑑 𝑆 𝑏 ↔ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) ) |
72 |
71
|
rexeqbi1dv |
⊢ ( 𝑣 = ( 𝑠 “ { 𝑎 } ) → ( ∃ 𝑏 ∈ 𝑣 ∀ 𝑑 ∈ 𝑣 ¬ 𝑑 𝑆 𝑏 ↔ ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) ) |
73 |
70 72
|
imbi12d |
⊢ ( 𝑣 = ( 𝑠 “ { 𝑎 } ) → ( ( ( 𝑣 ⊆ 𝐵 ∧ 𝑣 ≠ ∅ ) → ∃ 𝑏 ∈ 𝑣 ∀ 𝑑 ∈ 𝑣 ¬ 𝑑 𝑆 𝑏 ) ↔ ( ( ( 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ∧ ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) ) ) |
74 |
67 73
|
spcv |
⊢ ( ∀ 𝑣 ( ( 𝑣 ⊆ 𝐵 ∧ 𝑣 ≠ ∅ ) → ∃ 𝑏 ∈ 𝑣 ∀ 𝑑 ∈ 𝑣 ¬ 𝑑 𝑆 𝑏 ) → ( ( ( 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ∧ ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) ) |
75 |
66 74
|
sylbi |
⊢ ( 𝑆 Fr 𝐵 → ( ( ( 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ∧ ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) ) |
76 |
55 65 75
|
syl2ani |
⊢ ( 𝑆 Fr 𝐵 → ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑎 ∈ dom 𝑠 ) → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) ) |
77 |
|
1stdm |
⊢ ( ( Rel 𝑠 ∧ 𝑤 ∈ 𝑠 ) → ( 1st ‘ 𝑤 ) ∈ dom 𝑠 ) |
78 |
|
breq1 |
⊢ ( 𝑐 = ( 1st ‘ 𝑤 ) → ( 𝑐 𝑅 𝑎 ↔ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ) ) |
79 |
78
|
notbid |
⊢ ( 𝑐 = ( 1st ‘ 𝑤 ) → ( ¬ 𝑐 𝑅 𝑎 ↔ ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ) ) |
80 |
79
|
rspccv |
⊢ ( ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ( ( 1st ‘ 𝑤 ) ∈ dom 𝑠 → ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ) ) |
81 |
77 80
|
syl5 |
⊢ ( ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ( ( Rel 𝑠 ∧ 𝑤 ∈ 𝑠 ) → ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ) ) |
82 |
81
|
expd |
⊢ ( ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ( Rel 𝑠 → ( 𝑤 ∈ 𝑠 → ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ) ) ) |
83 |
82
|
impcom |
⊢ ( ( Rel 𝑠 ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) → ( 𝑤 ∈ 𝑠 → ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ) ) |
84 |
83
|
adantr |
⊢ ( ( ( Rel 𝑠 ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 𝑤 ∈ 𝑠 → ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ) ) |
85 |
|
elrel |
⊢ ( ( Rel 𝑠 ∧ 𝑤 ∈ 𝑠 ) → ∃ 𝑡 ∃ 𝑢 𝑤 = 〈 𝑡 , 𝑢 〉 ) |
86 |
85
|
ex |
⊢ ( Rel 𝑠 → ( 𝑤 ∈ 𝑠 → ∃ 𝑡 ∃ 𝑢 𝑤 = 〈 𝑡 , 𝑢 〉 ) ) |
87 |
86
|
adantr |
⊢ ( ( Rel 𝑠 ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 𝑤 ∈ 𝑠 → ∃ 𝑡 ∃ 𝑢 𝑤 = 〈 𝑡 , 𝑢 〉 ) ) |
88 |
|
vex |
⊢ 𝑢 ∈ V |
89 |
56 88
|
elimasn |
⊢ ( 𝑢 ∈ ( 𝑠 “ { 𝑎 } ) ↔ 〈 𝑎 , 𝑢 〉 ∈ 𝑠 ) |
90 |
|
breq1 |
⊢ ( 𝑑 = 𝑢 → ( 𝑑 𝑆 𝑏 ↔ 𝑢 𝑆 𝑏 ) ) |
91 |
90
|
notbid |
⊢ ( 𝑑 = 𝑢 → ( ¬ 𝑑 𝑆 𝑏 ↔ ¬ 𝑢 𝑆 𝑏 ) ) |
92 |
91
|
rspccv |
⊢ ( ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ( 𝑢 ∈ ( 𝑠 “ { 𝑎 } ) → ¬ 𝑢 𝑆 𝑏 ) ) |
93 |
89 92
|
syl5bir |
⊢ ( ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ( 〈 𝑎 , 𝑢 〉 ∈ 𝑠 → ¬ 𝑢 𝑆 𝑏 ) ) |
94 |
93
|
adantl |
⊢ ( ( Rel 𝑠 ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 〈 𝑎 , 𝑢 〉 ∈ 𝑠 → ¬ 𝑢 𝑆 𝑏 ) ) |
95 |
|
opeq1 |
⊢ ( 𝑡 = 𝑎 → 〈 𝑡 , 𝑢 〉 = 〈 𝑎 , 𝑢 〉 ) |
96 |
95
|
eleq1d |
⊢ ( 𝑡 = 𝑎 → ( 〈 𝑡 , 𝑢 〉 ∈ 𝑠 ↔ 〈 𝑎 , 𝑢 〉 ∈ 𝑠 ) ) |
97 |
96
|
imbi1d |
⊢ ( 𝑡 = 𝑎 → ( ( 〈 𝑡 , 𝑢 〉 ∈ 𝑠 → ¬ 𝑢 𝑆 𝑏 ) ↔ ( 〈 𝑎 , 𝑢 〉 ∈ 𝑠 → ¬ 𝑢 𝑆 𝑏 ) ) ) |
98 |
94 97
|
syl5ibr |
⊢ ( 𝑡 = 𝑎 → ( ( Rel 𝑠 ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 〈 𝑡 , 𝑢 〉 ∈ 𝑠 → ¬ 𝑢 𝑆 𝑏 ) ) ) |
99 |
98
|
com3l |
⊢ ( ( Rel 𝑠 ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 〈 𝑡 , 𝑢 〉 ∈ 𝑠 → ( 𝑡 = 𝑎 → ¬ 𝑢 𝑆 𝑏 ) ) ) |
100 |
|
eleq1 |
⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( 𝑤 ∈ 𝑠 ↔ 〈 𝑡 , 𝑢 〉 ∈ 𝑠 ) ) |
101 |
|
vex |
⊢ 𝑡 ∈ V |
102 |
101 88
|
op1std |
⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( 1st ‘ 𝑤 ) = 𝑡 ) |
103 |
102
|
eqeq1d |
⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ( 1st ‘ 𝑤 ) = 𝑎 ↔ 𝑡 = 𝑎 ) ) |
104 |
101 88
|
op2ndd |
⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( 2nd ‘ 𝑤 ) = 𝑢 ) |
105 |
104
|
breq1d |
⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ↔ 𝑢 𝑆 𝑏 ) ) |
106 |
105
|
notbid |
⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ↔ ¬ 𝑢 𝑆 𝑏 ) ) |
107 |
103 106
|
imbi12d |
⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ↔ ( 𝑡 = 𝑎 → ¬ 𝑢 𝑆 𝑏 ) ) ) |
108 |
100 107
|
imbi12d |
⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ( 𝑤 ∈ 𝑠 → ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ↔ ( 〈 𝑡 , 𝑢 〉 ∈ 𝑠 → ( 𝑡 = 𝑎 → ¬ 𝑢 𝑆 𝑏 ) ) ) ) |
109 |
99 108
|
syl5ibr |
⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ( Rel 𝑠 ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 𝑤 ∈ 𝑠 → ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
110 |
109
|
exlimivv |
⊢ ( ∃ 𝑡 ∃ 𝑢 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ( Rel 𝑠 ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 𝑤 ∈ 𝑠 → ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
111 |
110
|
com3l |
⊢ ( ( Rel 𝑠 ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 𝑤 ∈ 𝑠 → ( ∃ 𝑡 ∃ 𝑢 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
112 |
87 111
|
mpdd |
⊢ ( ( Rel 𝑠 ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 𝑤 ∈ 𝑠 → ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) |
113 |
112
|
adantlr |
⊢ ( ( ( Rel 𝑠 ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 𝑤 ∈ 𝑠 → ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) |
114 |
84 113
|
jcad |
⊢ ( ( ( Rel 𝑠 ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 𝑤 ∈ 𝑠 → ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
115 |
114
|
ralrimiv |
⊢ ( ( ( Rel 𝑠 ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ∀ 𝑤 ∈ 𝑠 ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) |
116 |
115
|
ex |
⊢ ( ( Rel 𝑠 ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) → ( ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ∀ 𝑤 ∈ 𝑠 ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
117 |
16 116
|
sylan |
⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) → ( ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ∀ 𝑤 ∈ 𝑠 ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
118 |
|
olc |
⊢ ( ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) → ( ¬ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∨ ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
119 |
118
|
ralimi |
⊢ ( ∀ 𝑤 ∈ 𝑠 ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) → ∀ 𝑤 ∈ 𝑠 ( ¬ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∨ ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
120 |
117 119
|
syl6 |
⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) → ( ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ∀ 𝑤 ∈ 𝑠 ( ¬ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∨ ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) ) |
121 |
|
ianor |
⊢ ( ¬ ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∨ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ↔ ( ¬ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∨ ¬ ( ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∨ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
122 |
|
vex |
⊢ 𝑤 ∈ V |
123 |
|
opex |
⊢ 〈 𝑎 , 𝑏 〉 ∈ V |
124 |
|
eleq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↔ 𝑤 ∈ ( 𝐴 × 𝐵 ) ) ) |
125 |
124
|
anbi1d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ↔ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ) ) |
126 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑤 ) ) |
127 |
126
|
breq1d |
⊢ ( 𝑥 = 𝑤 → ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ↔ ( 1st ‘ 𝑤 ) 𝑅 ( 1st ‘ 𝑦 ) ) ) |
128 |
126
|
eqeq1d |
⊢ ( 𝑥 = 𝑤 → ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ↔ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑦 ) ) ) |
129 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑤 ) ) |
130 |
129
|
breq1d |
⊢ ( 𝑥 = 𝑤 → ( ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ↔ ( 2nd ‘ 𝑤 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) |
131 |
128 130
|
anbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ↔ ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑤 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) |
132 |
127 131
|
orbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ↔ ( ( 1st ‘ 𝑤 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑤 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) ) |
133 |
125 132
|
anbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) ↔ ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑤 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑤 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) ) ) |
134 |
|
eleq1 |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( 𝑦 ∈ ( 𝐴 × 𝐵 ) ↔ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ) |
135 |
134
|
anbi2d |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ↔ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ) ) |
136 |
56 58
|
op1std |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( 1st ‘ 𝑦 ) = 𝑎 ) |
137 |
136
|
breq2d |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( 1st ‘ 𝑤 ) 𝑅 ( 1st ‘ 𝑦 ) ↔ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ) ) |
138 |
136
|
eqeq2d |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑦 ) ↔ ( 1st ‘ 𝑤 ) = 𝑎 ) ) |
139 |
56 58
|
op2ndd |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( 2nd ‘ 𝑦 ) = 𝑏 ) |
140 |
139
|
breq2d |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( 2nd ‘ 𝑤 ) 𝑆 ( 2nd ‘ 𝑦 ) ↔ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) |
141 |
138 140
|
anbi12d |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑤 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ↔ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) |
142 |
137 141
|
orbi12d |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( ( 1st ‘ 𝑤 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑤 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ↔ ( ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∨ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
143 |
135 142
|
anbi12d |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑤 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑤 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) ↔ ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∨ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) ) |
144 |
122 123 133 143 1
|
brab |
⊢ ( 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ↔ ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∨ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
145 |
121 144
|
xchnxbir |
⊢ ( ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ↔ ( ¬ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∨ ¬ ( ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∨ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
146 |
|
ioran |
⊢ ( ¬ ( ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∨ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ↔ ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ¬ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) |
147 |
|
ianor |
⊢ ( ¬ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ↔ ( ¬ ( 1st ‘ 𝑤 ) = 𝑎 ∨ ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) |
148 |
|
pm4.62 |
⊢ ( ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ↔ ( ¬ ( 1st ‘ 𝑤 ) = 𝑎 ∨ ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) |
149 |
147 148
|
bitr4i |
⊢ ( ¬ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ↔ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) |
150 |
149
|
anbi2i |
⊢ ( ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ¬ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ↔ ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) |
151 |
146 150
|
bitri |
⊢ ( ¬ ( ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∨ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ↔ ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) |
152 |
151
|
orbi2i |
⊢ ( ( ¬ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∨ ¬ ( ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∨ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ↔ ( ¬ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∨ ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
153 |
145 152
|
bitri |
⊢ ( ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ↔ ( ¬ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∨ ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
154 |
153
|
ralbii |
⊢ ( ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ↔ ∀ 𝑤 ∈ 𝑠 ( ¬ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∨ ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
155 |
120 154
|
syl6ibr |
⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) → ( ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
156 |
155
|
reximdv |
⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) → ( ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
157 |
156
|
ex |
⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ( ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ( ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) ) |
158 |
157
|
com23 |
⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ( ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ( ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) ) |
159 |
158
|
adantr |
⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑎 ∈ dom 𝑠 ) → ( ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ( ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) ) |
160 |
76 159
|
sylcom |
⊢ ( 𝑆 Fr 𝐵 → ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑎 ∈ dom 𝑠 ) → ( ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) ) |
161 |
160
|
impl |
⊢ ( ( ( 𝑆 Fr 𝐵 ∧ 𝑠 ⊆ ( 𝐴 × 𝐵 ) ) ∧ 𝑎 ∈ dom 𝑠 ) → ( ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
162 |
161
|
expimpd |
⊢ ( ( 𝑆 Fr 𝐵 ∧ 𝑠 ⊆ ( 𝐴 × 𝐵 ) ) → ( ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
163 |
162
|
3adant3 |
⊢ ( ( 𝑆 Fr 𝐵 ∧ 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ( ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
164 |
|
resss |
⊢ ( 𝑠 ↾ { 𝑎 } ) ⊆ 𝑠 |
165 |
|
df-rex |
⊢ ( ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ↔ ∃ 𝑏 ( 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
166 |
|
eqid |
⊢ 〈 𝑎 , 𝑏 〉 = 〈 𝑎 , 𝑏 〉 |
167 |
|
eqeq1 |
⊢ ( 𝑧 = 〈 𝑎 , 𝑏 〉 → ( 𝑧 = 〈 𝑎 , 𝑏 〉 ↔ 〈 𝑎 , 𝑏 〉 = 〈 𝑎 , 𝑏 〉 ) ) |
168 |
|
breq2 |
⊢ ( 𝑧 = 〈 𝑎 , 𝑏 〉 → ( 𝑤 𝑇 𝑧 ↔ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
169 |
168
|
notbid |
⊢ ( 𝑧 = 〈 𝑎 , 𝑏 〉 → ( ¬ 𝑤 𝑇 𝑧 ↔ ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
170 |
169
|
ralbidv |
⊢ ( 𝑧 = 〈 𝑎 , 𝑏 〉 → ( ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ↔ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
171 |
170
|
anbi2d |
⊢ ( 𝑧 = 〈 𝑎 , 𝑏 〉 → ( ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ↔ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) ) |
172 |
167 171
|
anbi12d |
⊢ ( 𝑧 = 〈 𝑎 , 𝑏 〉 → ( ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ↔ ( 〈 𝑎 , 𝑏 〉 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) ) ) |
173 |
123 172
|
spcev |
⊢ ( ( 〈 𝑎 , 𝑏 〉 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) → ∃ 𝑧 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
174 |
166 173
|
mpan |
⊢ ( ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) → ∃ 𝑧 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
175 |
59 174
|
sylanb |
⊢ ( ( 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) → ∃ 𝑧 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
176 |
175
|
eximi |
⊢ ( ∃ 𝑏 ( 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) → ∃ 𝑏 ∃ 𝑧 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
177 |
165 176
|
sylbi |
⊢ ( ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 → ∃ 𝑏 ∃ 𝑧 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
178 |
|
excom |
⊢ ( ∃ 𝑏 ∃ 𝑧 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ↔ ∃ 𝑧 ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
179 |
177 178
|
sylib |
⊢ ( ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 → ∃ 𝑧 ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
180 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ ( 𝑠 ↾ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ↔ ∃ 𝑧 ( 𝑧 ∈ ( 𝑠 ↾ { 𝑎 } ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) |
181 |
56
|
elsnres |
⊢ ( 𝑧 ∈ ( 𝑠 ↾ { 𝑎 } ) ↔ ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ) ) |
182 |
181
|
anbi1i |
⊢ ( ( 𝑧 ∈ ( 𝑠 ↾ { 𝑎 } ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ↔ ( ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) |
183 |
|
19.41v |
⊢ ( ∃ 𝑏 ( ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ↔ ( ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) |
184 |
|
anass |
⊢ ( ( ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ↔ ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
185 |
184
|
exbii |
⊢ ( ∃ 𝑏 ( ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ↔ ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
186 |
182 183 185
|
3bitr2i |
⊢ ( ( 𝑧 ∈ ( 𝑠 ↾ { 𝑎 } ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ↔ ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
187 |
186
|
exbii |
⊢ ( ∃ 𝑧 ( 𝑧 ∈ ( 𝑠 ↾ { 𝑎 } ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ↔ ∃ 𝑧 ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
188 |
180 187
|
bitri |
⊢ ( ∃ 𝑧 ∈ ( 𝑠 ↾ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ↔ ∃ 𝑧 ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
189 |
179 188
|
sylibr |
⊢ ( ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 → ∃ 𝑧 ∈ ( 𝑠 ↾ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) |
190 |
|
ssrexv |
⊢ ( ( 𝑠 ↾ { 𝑎 } ) ⊆ 𝑠 → ( ∃ 𝑧 ∈ ( 𝑠 ↾ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) |
191 |
164 189 190
|
mpsyl |
⊢ ( ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) |
192 |
163 191
|
syl6 |
⊢ ( ( 𝑆 Fr 𝐵 ∧ 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ( ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) |
193 |
192
|
expd |
⊢ ( ( 𝑆 Fr 𝐵 ∧ 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ( 𝑎 ∈ dom 𝑠 → ( ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
194 |
193
|
rexlimdv |
⊢ ( ( 𝑆 Fr 𝐵 ∧ 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ( ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) |
195 |
194
|
3expib |
⊢ ( 𝑆 Fr 𝐵 → ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ( ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
196 |
195
|
adantl |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑆 Fr 𝐵 ) → ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ( ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
197 |
34 196
|
mpdd |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑆 Fr 𝐵 ) → ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) |
198 |
197
|
alrimiv |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑆 Fr 𝐵 ) → ∀ 𝑠 ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) |
199 |
|
df-fr |
⊢ ( 𝑇 Fr ( 𝐴 × 𝐵 ) ↔ ∀ 𝑠 ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) |
200 |
198 199
|
sylibr |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑆 Fr 𝐵 ) → 𝑇 Fr ( 𝐴 × 𝐵 ) ) |