Metamath Proof Explorer


Theorem frxp3

Description: Give well-foundedness over a triple Cartesian product. (Contributed by Scott Fenton, 21-Aug-2024)

Ref Expression
Hypotheses xpord3.1 𝑈 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ ( ( ( ( 1st ‘ ( 1st𝑥 ) ) 𝑅 ( 1st ‘ ( 1st𝑦 ) ) ∨ ( 1st ‘ ( 1st𝑥 ) ) = ( 1st ‘ ( 1st𝑦 ) ) ) ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑆 ( 2nd ‘ ( 1st𝑦 ) ) ∨ ( 2nd ‘ ( 1st𝑥 ) ) = ( 2nd ‘ ( 1st𝑦 ) ) ) ∧ ( ( 2nd𝑥 ) 𝑇 ( 2nd𝑦 ) ∨ ( 2nd𝑥 ) = ( 2nd𝑦 ) ) ) ∧ 𝑥𝑦 ) ) }
frxp3.1 ( 𝜑𝑅 Fr 𝐴 )
frxp3.2 ( 𝜑𝑆 Fr 𝐵 )
frxp3.3 ( 𝜑𝑇 Fr 𝐶 )
Assertion frxp3 ( 𝜑𝑈 Fr ( ( 𝐴 × 𝐵 ) × 𝐶 ) )

Proof

Step Hyp Ref Expression
1 xpord3.1 𝑈 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ ( ( ( ( 1st ‘ ( 1st𝑥 ) ) 𝑅 ( 1st ‘ ( 1st𝑦 ) ) ∨ ( 1st ‘ ( 1st𝑥 ) ) = ( 1st ‘ ( 1st𝑦 ) ) ) ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑆 ( 2nd ‘ ( 1st𝑦 ) ) ∨ ( 2nd ‘ ( 1st𝑥 ) ) = ( 2nd ‘ ( 1st𝑦 ) ) ) ∧ ( ( 2nd𝑥 ) 𝑇 ( 2nd𝑦 ) ∨ ( 2nd𝑥 ) = ( 2nd𝑦 ) ) ) ∧ 𝑥𝑦 ) ) }
2 frxp3.1 ( 𝜑𝑅 Fr 𝐴 )
3 frxp3.2 ( 𝜑𝑆 Fr 𝐵 )
4 frxp3.3 ( 𝜑𝑇 Fr 𝐶 )
5 2 adantr ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → 𝑅 Fr 𝐴 )
6 dmss ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → dom 𝑠 ⊆ dom ( ( 𝐴 × 𝐵 ) × 𝐶 ) )
7 6 ad2antrl ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → dom 𝑠 ⊆ dom ( ( 𝐴 × 𝐵 ) × 𝐶 ) )
8 dmxpss dom ( ( 𝐴 × 𝐵 ) × 𝐶 ) ⊆ ( 𝐴 × 𝐵 )
9 7 8 sstrdi ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → dom 𝑠 ⊆ ( 𝐴 × 𝐵 ) )
10 dmss ( dom 𝑠 ⊆ ( 𝐴 × 𝐵 ) → dom dom 𝑠 ⊆ dom ( 𝐴 × 𝐵 ) )
11 9 10 syl ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → dom dom 𝑠 ⊆ dom ( 𝐴 × 𝐵 ) )
12 dmxpss dom ( 𝐴 × 𝐵 ) ⊆ 𝐴
13 11 12 sstrdi ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → dom dom 𝑠𝐴 )
14 vex 𝑠 ∈ V
15 14 dmex dom 𝑠 ∈ V
16 15 dmex dom dom 𝑠 ∈ V
17 16 a1i ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → dom dom 𝑠 ∈ V )
18 relxp Rel ( ( 𝐴 × 𝐵 ) × 𝐶 )
19 relss ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → ( Rel ( ( 𝐴 × 𝐵 ) × 𝐶 ) → Rel 𝑠 ) )
20 18 19 mpi ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → Rel 𝑠 )
21 20 adantl ( ( 𝜑𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) → Rel 𝑠 )
22 reldm0 ( Rel 𝑠 → ( 𝑠 = ∅ ↔ dom 𝑠 = ∅ ) )
23 21 22 syl ( ( 𝜑𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) → ( 𝑠 = ∅ ↔ dom 𝑠 = ∅ ) )
24 relxp Rel ( 𝐴 × 𝐵 )
25 relss ( dom ( ( 𝐴 × 𝐵 ) × 𝐶 ) ⊆ ( 𝐴 × 𝐵 ) → ( Rel ( 𝐴 × 𝐵 ) → Rel dom ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) )
26 8 24 25 mp2 Rel dom ( ( 𝐴 × 𝐵 ) × 𝐶 )
27 relss ( dom 𝑠 ⊆ dom ( ( 𝐴 × 𝐵 ) × 𝐶 ) → ( Rel dom ( ( 𝐴 × 𝐵 ) × 𝐶 ) → Rel dom 𝑠 ) )
28 6 26 27 mpisyl ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → Rel dom 𝑠 )
29 28 adantl ( ( 𝜑𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) → Rel dom 𝑠 )
30 reldm0 ( Rel dom 𝑠 → ( dom 𝑠 = ∅ ↔ dom dom 𝑠 = ∅ ) )
31 29 30 syl ( ( 𝜑𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) → ( dom 𝑠 = ∅ ↔ dom dom 𝑠 = ∅ ) )
32 23 31 bitrd ( ( 𝜑𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) → ( 𝑠 = ∅ ↔ dom dom 𝑠 = ∅ ) )
33 32 necon3bid ( ( 𝜑𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) → ( 𝑠 ≠ ∅ ↔ dom dom 𝑠 ≠ ∅ ) )
34 33 biimpa ( ( ( 𝜑𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) ∧ 𝑠 ≠ ∅ ) → dom dom 𝑠 ≠ ∅ )
35 34 anasss ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → dom dom 𝑠 ≠ ∅ )
36 5 13 17 35 frd ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ∃ 𝑎 ∈ dom dom 𝑠𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 )
37 3 ad2antrr ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) → 𝑆 Fr 𝐵 )
38 imassrn ( dom 𝑠 “ { 𝑎 } ) ⊆ ran dom 𝑠
39 rnss ( dom 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ran dom 𝑠 ⊆ ran ( 𝐴 × 𝐵 ) )
40 9 39 syl ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ran dom 𝑠 ⊆ ran ( 𝐴 × 𝐵 ) )
41 rnxpss ran ( 𝐴 × 𝐵 ) ⊆ 𝐵
42 40 41 sstrdi ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ran dom 𝑠𝐵 )
43 38 42 sstrid ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ( dom 𝑠 “ { 𝑎 } ) ⊆ 𝐵 )
44 43 adantr ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) → ( dom 𝑠 “ { 𝑎 } ) ⊆ 𝐵 )
45 15 imaex ( dom 𝑠 “ { 𝑎 } ) ∈ V
46 45 a1i ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) → ( dom 𝑠 “ { 𝑎 } ) ∈ V )
47 imadisj ( ( dom 𝑠 “ { 𝑎 } ) = ∅ ↔ ( dom dom 𝑠 ∩ { 𝑎 } ) = ∅ )
48 disjsn ( ( dom dom 𝑠 ∩ { 𝑎 } ) = ∅ ↔ ¬ 𝑎 ∈ dom dom 𝑠 )
49 47 48 bitri ( ( dom 𝑠 “ { 𝑎 } ) = ∅ ↔ ¬ 𝑎 ∈ dom dom 𝑠 )
50 49 necon2abii ( 𝑎 ∈ dom dom 𝑠 ↔ ( dom 𝑠 “ { 𝑎 } ) ≠ ∅ )
51 50 biimpi ( 𝑎 ∈ dom dom 𝑠 → ( dom 𝑠 “ { 𝑎 } ) ≠ ∅ )
52 51 ad2antrl ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) → ( dom 𝑠 “ { 𝑎 } ) ≠ ∅ )
53 37 44 46 52 frd ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) → ∃ 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 )
54 4 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) → 𝑇 Fr 𝐶 )
55 imassrn ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ⊆ ran 𝑠
56 rnss ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → ran 𝑠 ⊆ ran ( ( 𝐴 × 𝐵 ) × 𝐶 ) )
57 56 ad2antrl ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ran 𝑠 ⊆ ran ( ( 𝐴 × 𝐵 ) × 𝐶 ) )
58 rnxpss ran ( ( 𝐴 × 𝐵 ) × 𝐶 ) ⊆ 𝐶
59 57 58 sstrdi ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ran 𝑠𝐶 )
60 55 59 sstrid ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ⊆ 𝐶 )
61 60 ad2antrr ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) → ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ⊆ 𝐶 )
62 14 imaex ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∈ V
63 62 a1i ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) → ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∈ V )
64 simprl ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) → 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) )
65 vex 𝑎 ∈ V
66 vex 𝑏 ∈ V
67 65 66 elimasn ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ↔ ⟨ 𝑎 , 𝑏 ⟩ ∈ dom 𝑠 )
68 64 67 sylib ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) → ⟨ 𝑎 , 𝑏 ⟩ ∈ dom 𝑠 )
69 imadisj ( ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) = ∅ ↔ ( dom 𝑠 ∩ { ⟨ 𝑎 , 𝑏 ⟩ } ) = ∅ )
70 disjsn ( ( dom 𝑠 ∩ { ⟨ 𝑎 , 𝑏 ⟩ } ) = ∅ ↔ ¬ ⟨ 𝑎 , 𝑏 ⟩ ∈ dom 𝑠 )
71 69 70 bitri ( ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) = ∅ ↔ ¬ ⟨ 𝑎 , 𝑏 ⟩ ∈ dom 𝑠 )
72 71 necon2abii ( ⟨ 𝑎 , 𝑏 ⟩ ∈ dom 𝑠 ↔ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ≠ ∅ )
73 68 72 sylib ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) → ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ≠ ∅ )
74 54 61 63 73 frd ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) → ∃ 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 )
75 df-ot 𝑎 , 𝑏 , 𝑐 ⟩ = ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑐
76 simprl ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) → 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) )
77 opex 𝑎 , 𝑏 ⟩ ∈ V
78 vex 𝑐 ∈ V
79 77 78 elimasn ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ↔ ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑐 ⟩ ∈ 𝑠 )
80 76 79 sylib ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) → ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑐 ⟩ ∈ 𝑠 )
81 75 80 eqeltrid ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) → ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∈ 𝑠 )
82 simplrl ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) → 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) )
83 82 ad2antrr ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) → 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) )
84 el2xpss ( ( 𝑞𝑠𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) → ∃ 𝑔𝑖 𝑞 = ⟨ 𝑔 , , 𝑖 ⟩ )
85 84 ancoms ( ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑞𝑠 ) → ∃ 𝑔𝑖 𝑞 = ⟨ 𝑔 , , 𝑖 ⟩ )
86 83 85 sylan ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 𝑞𝑠 ) → ∃ 𝑔𝑖 𝑞 = ⟨ 𝑔 , , 𝑖 ⟩ )
87 df-ne ( 𝑖𝑐 ↔ ¬ 𝑖 = 𝑐 )
88 87 con2bii ( 𝑖 = 𝑐 ↔ ¬ 𝑖𝑐 )
89 88 biimpi ( 𝑖 = 𝑐 → ¬ 𝑖𝑐 )
90 89 intnand ( 𝑖 = 𝑐 → ¬ ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ 𝑖𝑐 ) )
91 90 adantl ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , 𝑏 , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑖 = 𝑐 ) → ¬ ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ 𝑖𝑐 ) )
92 breq1 ( 𝑓 = 𝑖 → ( 𝑓 𝑇 𝑐𝑖 𝑇 𝑐 ) )
93 92 notbid ( 𝑓 = 𝑖 → ( ¬ 𝑓 𝑇 𝑐 ↔ ¬ 𝑖 𝑇 𝑐 ) )
94 simplrr ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , 𝑏 , 𝑖 ⟩ ∈ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 )
95 94 adantr ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , 𝑏 , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑖𝑐 ) → ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 )
96 df-ot 𝑎 , 𝑏 , 𝑖 ⟩ = ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑖
97 simplr ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , 𝑏 , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑖𝑐 ) → ⟨ 𝑎 , 𝑏 , 𝑖 ⟩ ∈ 𝑠 )
98 96 97 eqeltrrid ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , 𝑏 , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑖𝑐 ) → ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑖 ⟩ ∈ 𝑠 )
99 vex 𝑖 ∈ V
100 77 99 elimasn ( 𝑖 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ↔ ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑖 ⟩ ∈ 𝑠 )
101 98 100 sylibr ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , 𝑏 , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑖𝑐 ) → 𝑖 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) )
102 93 95 101 rspcdva ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , 𝑏 , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑖𝑐 ) → ¬ 𝑖 𝑇 𝑐 )
103 simpr ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , 𝑏 , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑖𝑐 ) → 𝑖𝑐 )
104 103 neneqd ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , 𝑏 , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑖𝑐 ) → ¬ 𝑖 = 𝑐 )
105 ioran ( ¬ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ↔ ( ¬ 𝑖 𝑇 𝑐 ∧ ¬ 𝑖 = 𝑐 ) )
106 102 104 105 sylanbrc ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , 𝑏 , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑖𝑐 ) → ¬ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) )
107 106 intn3an3d ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , 𝑏 , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑖𝑐 ) → ¬ ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) )
108 107 intnanrd ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , 𝑏 , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑖𝑐 ) → ¬ ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ 𝑖𝑐 ) )
109 91 108 pm2.61dane ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , 𝑏 , 𝑖 ⟩ ∈ 𝑠 ) → ¬ ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ 𝑖𝑐 ) )
110 oteq2 ( = 𝑏 → ⟨ 𝑎 , , 𝑖 ⟩ = ⟨ 𝑎 , 𝑏 , 𝑖 ⟩ )
111 110 eleq1d ( = 𝑏 → ( ⟨ 𝑎 , , 𝑖 ⟩ ∈ 𝑠 ↔ ⟨ 𝑎 , 𝑏 , 𝑖 ⟩ ∈ 𝑠 ) )
112 111 anbi2d ( = 𝑏 → ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , , 𝑖 ⟩ ∈ 𝑠 ) ↔ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , 𝑏 , 𝑖 ⟩ ∈ 𝑠 ) ) )
113 neeq1 ( = 𝑏 → ( 𝑏𝑏𝑏 ) )
114 113 orbi1d ( = 𝑏 → ( ( 𝑏𝑖𝑐 ) ↔ ( 𝑏𝑏𝑖𝑐 ) ) )
115 neirr ¬ 𝑏𝑏
116 orel1 ( ¬ 𝑏𝑏 → ( ( 𝑏𝑏𝑖𝑐 ) → 𝑖𝑐 ) )
117 115 116 ax-mp ( ( 𝑏𝑏𝑖𝑐 ) → 𝑖𝑐 )
118 olc ( 𝑖𝑐 → ( 𝑏𝑏𝑖𝑐 ) )
119 117 118 impbii ( ( 𝑏𝑏𝑖𝑐 ) ↔ 𝑖𝑐 )
120 114 119 bitrdi ( = 𝑏 → ( ( 𝑏𝑖𝑐 ) ↔ 𝑖𝑐 ) )
121 120 anbi2d ( = 𝑏 → ( ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ ( 𝑏𝑖𝑐 ) ) ↔ ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ 𝑖𝑐 ) ) )
122 121 notbid ( = 𝑏 → ( ¬ ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ ( 𝑏𝑖𝑐 ) ) ↔ ¬ ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ 𝑖𝑐 ) ) )
123 112 122 imbi12d ( = 𝑏 → ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , , 𝑖 ⟩ ∈ 𝑠 ) → ¬ ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ ( 𝑏𝑖𝑐 ) ) ) ↔ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , 𝑏 , 𝑖 ⟩ ∈ 𝑠 ) → ¬ ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ 𝑖𝑐 ) ) ) )
124 109 123 mpbiri ( = 𝑏 → ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , , 𝑖 ⟩ ∈ 𝑠 ) → ¬ ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ ( 𝑏𝑖𝑐 ) ) ) )
125 124 impcom ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , , 𝑖 ⟩ ∈ 𝑠 ) ∧ = 𝑏 ) → ¬ ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ ( 𝑏𝑖𝑐 ) ) )
126 breq1 ( 𝑒 = → ( 𝑒 𝑆 𝑏 𝑆 𝑏 ) )
127 126 notbid ( 𝑒 = → ( ¬ 𝑒 𝑆 𝑏 ↔ ¬ 𝑆 𝑏 ) )
128 simplrr ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) → ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 )
129 128 ad2antrr ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑏 ) → ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 )
130 df-ot 𝑎 , , 𝑖 ⟩ = ⟨ ⟨ 𝑎 , ⟩ , 𝑖
131 simplr ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑏 ) → ⟨ 𝑎 , , 𝑖 ⟩ ∈ 𝑠 )
132 130 131 eqeltrrid ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑏 ) → ⟨ ⟨ 𝑎 , ⟩ , 𝑖 ⟩ ∈ 𝑠 )
133 opex 𝑎 , ⟩ ∈ V
134 133 99 opeldm ( ⟨ ⟨ 𝑎 , ⟩ , 𝑖 ⟩ ∈ 𝑠 → ⟨ 𝑎 , ⟩ ∈ dom 𝑠 )
135 132 134 syl ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑏 ) → ⟨ 𝑎 , ⟩ ∈ dom 𝑠 )
136 vex ∈ V
137 65 136 elimasn ( ∈ ( dom 𝑠 “ { 𝑎 } ) ↔ ⟨ 𝑎 , ⟩ ∈ dom 𝑠 )
138 135 137 sylibr ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑏 ) → ∈ ( dom 𝑠 “ { 𝑎 } ) )
139 127 129 138 rspcdva ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑏 ) → ¬ 𝑆 𝑏 )
140 simpr ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑏 ) → 𝑏 )
141 140 neneqd ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑏 ) → ¬ = 𝑏 )
142 ioran ( ¬ ( 𝑆 𝑏 = 𝑏 ) ↔ ( ¬ 𝑆 𝑏 ∧ ¬ = 𝑏 ) )
143 139 141 142 sylanbrc ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑏 ) → ¬ ( 𝑆 𝑏 = 𝑏 ) )
144 143 intn3an2d ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑏 ) → ¬ ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) )
145 144 intnanrd ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑏 ) → ¬ ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ ( 𝑏𝑖𝑐 ) ) )
146 125 145 pm2.61dane ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , , 𝑖 ⟩ ∈ 𝑠 ) → ¬ ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ ( 𝑏𝑖𝑐 ) ) )
147 oteq1 ( 𝑔 = 𝑎 → ⟨ 𝑔 , , 𝑖 ⟩ = ⟨ 𝑎 , , 𝑖 ⟩ )
148 147 eleq1d ( 𝑔 = 𝑎 → ( ⟨ 𝑔 , , 𝑖 ⟩ ∈ 𝑠 ↔ ⟨ 𝑎 , , 𝑖 ⟩ ∈ 𝑠 ) )
149 148 anbi2d ( 𝑔 = 𝑎 → ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑔 , , 𝑖 ⟩ ∈ 𝑠 ) ↔ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , , 𝑖 ⟩ ∈ 𝑠 ) ) )
150 neeq1 ( 𝑔 = 𝑎 → ( 𝑔𝑎𝑎𝑎 ) )
151 biidd ( 𝑔 = 𝑎 → ( 𝑏𝑏 ) )
152 biidd ( 𝑔 = 𝑎 → ( 𝑖𝑐𝑖𝑐 ) )
153 150 151 152 3orbi123d ( 𝑔 = 𝑎 → ( ( 𝑔𝑎𝑏𝑖𝑐 ) ↔ ( 𝑎𝑎𝑏𝑖𝑐 ) ) )
154 3orass ( ( 𝑎𝑎𝑏𝑖𝑐 ) ↔ ( 𝑎𝑎 ∨ ( 𝑏𝑖𝑐 ) ) )
155 neirr ¬ 𝑎𝑎
156 orel1 ( ¬ 𝑎𝑎 → ( ( 𝑎𝑎 ∨ ( 𝑏𝑖𝑐 ) ) → ( 𝑏𝑖𝑐 ) ) )
157 155 156 ax-mp ( ( 𝑎𝑎 ∨ ( 𝑏𝑖𝑐 ) ) → ( 𝑏𝑖𝑐 ) )
158 olc ( ( 𝑏𝑖𝑐 ) → ( 𝑎𝑎 ∨ ( 𝑏𝑖𝑐 ) ) )
159 157 158 impbii ( ( 𝑎𝑎 ∨ ( 𝑏𝑖𝑐 ) ) ↔ ( 𝑏𝑖𝑐 ) )
160 154 159 bitri ( ( 𝑎𝑎𝑏𝑖𝑐 ) ↔ ( 𝑏𝑖𝑐 ) )
161 153 160 bitrdi ( 𝑔 = 𝑎 → ( ( 𝑔𝑎𝑏𝑖𝑐 ) ↔ ( 𝑏𝑖𝑐 ) ) )
162 161 anbi2d ( 𝑔 = 𝑎 → ( ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ ( 𝑔𝑎𝑏𝑖𝑐 ) ) ↔ ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ ( 𝑏𝑖𝑐 ) ) ) )
163 162 notbid ( 𝑔 = 𝑎 → ( ¬ ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ ( 𝑔𝑎𝑏𝑖𝑐 ) ) ↔ ¬ ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ ( 𝑏𝑖𝑐 ) ) ) )
164 149 163 imbi12d ( 𝑔 = 𝑎 → ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑔 , , 𝑖 ⟩ ∈ 𝑠 ) → ¬ ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ ( 𝑔𝑎𝑏𝑖𝑐 ) ) ) ↔ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑎 , , 𝑖 ⟩ ∈ 𝑠 ) → ¬ ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ ( 𝑏𝑖𝑐 ) ) ) ) )
165 146 164 mpbiri ( 𝑔 = 𝑎 → ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑔 , , 𝑖 ⟩ ∈ 𝑠 ) → ¬ ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ ( 𝑔𝑎𝑏𝑖𝑐 ) ) ) )
166 165 impcom ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑔 , , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑔 = 𝑎 ) → ¬ ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ ( 𝑔𝑎𝑏𝑖𝑐 ) ) )
167 breq1 ( 𝑑 = 𝑔 → ( 𝑑 𝑅 𝑎𝑔 𝑅 𝑎 ) )
168 167 notbid ( 𝑑 = 𝑔 → ( ¬ 𝑑 𝑅 𝑎 ↔ ¬ 𝑔 𝑅 𝑎 ) )
169 simplrr ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) → ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 )
170 169 ad3antrrr ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑔 , , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑔𝑎 ) → ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 )
171 df-ot 𝑔 , , 𝑖 ⟩ = ⟨ ⟨ 𝑔 , ⟩ , 𝑖
172 simplr ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑔 , , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑔𝑎 ) → ⟨ 𝑔 , , 𝑖 ⟩ ∈ 𝑠 )
173 171 172 eqeltrrid ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑔 , , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑔𝑎 ) → ⟨ ⟨ 𝑔 , ⟩ , 𝑖 ⟩ ∈ 𝑠 )
174 opex 𝑔 , ⟩ ∈ V
175 174 99 opeldm ( ⟨ ⟨ 𝑔 , ⟩ , 𝑖 ⟩ ∈ 𝑠 → ⟨ 𝑔 , ⟩ ∈ dom 𝑠 )
176 vex 𝑔 ∈ V
177 176 136 opeldm ( ⟨ 𝑔 , ⟩ ∈ dom 𝑠𝑔 ∈ dom dom 𝑠 )
178 173 175 177 3syl ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑔 , , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑔𝑎 ) → 𝑔 ∈ dom dom 𝑠 )
179 168 170 178 rspcdva ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑔 , , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑔𝑎 ) → ¬ 𝑔 𝑅 𝑎 )
180 simpr ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑔 , , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑔𝑎 ) → 𝑔𝑎 )
181 180 neneqd ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑔 , , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑔𝑎 ) → ¬ 𝑔 = 𝑎 )
182 ioran ( ¬ ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ↔ ( ¬ 𝑔 𝑅 𝑎 ∧ ¬ 𝑔 = 𝑎 ) )
183 179 181 182 sylanbrc ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑔 , , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑔𝑎 ) → ¬ ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) )
184 183 intn3an1d ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑔 , , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑔𝑎 ) → ¬ ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) )
185 184 intnanrd ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑔 , , 𝑖 ⟩ ∈ 𝑠 ) ∧ 𝑔𝑎 ) → ¬ ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ ( 𝑔𝑎𝑏𝑖𝑐 ) ) )
186 166 185 pm2.61dane ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑔 , , 𝑖 ⟩ ∈ 𝑠 ) → ¬ ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ ( 𝑔𝑎𝑏𝑖𝑐 ) ) )
187 186 intn3an3d ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑔 , , 𝑖 ⟩ ∈ 𝑠 ) → ¬ ( ( 𝑔𝐴𝐵𝑖𝐶 ) ∧ ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ ( 𝑔𝑎𝑏𝑖𝑐 ) ) ) )
188 eleq1 ( 𝑞 = ⟨ 𝑔 , , 𝑖 ⟩ → ( 𝑞𝑠 ↔ ⟨ 𝑔 , , 𝑖 ⟩ ∈ 𝑠 ) )
189 188 anbi2d ( 𝑞 = ⟨ 𝑔 , , 𝑖 ⟩ → ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 𝑞𝑠 ) ↔ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑔 , , 𝑖 ⟩ ∈ 𝑠 ) ) )
190 breq1 ( 𝑞 = ⟨ 𝑔 , , 𝑖 ⟩ → ( 𝑞 𝑈𝑎 , 𝑏 , 𝑐 ⟩ ↔ ⟨ 𝑔 , , 𝑖𝑈𝑎 , 𝑏 , 𝑐 ⟩ ) )
191 1 xpord3lem ( ⟨ 𝑔 , , 𝑖𝑈𝑎 , 𝑏 , 𝑐 ⟩ ↔ ( ( 𝑔𝐴𝐵𝑖𝐶 ) ∧ ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ ( 𝑔𝑎𝑏𝑖𝑐 ) ) ) )
192 190 191 bitrdi ( 𝑞 = ⟨ 𝑔 , , 𝑖 ⟩ → ( 𝑞 𝑈𝑎 , 𝑏 , 𝑐 ⟩ ↔ ( ( 𝑔𝐴𝐵𝑖𝐶 ) ∧ ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ ( 𝑔𝑎𝑏𝑖𝑐 ) ) ) ) )
193 192 notbid ( 𝑞 = ⟨ 𝑔 , , 𝑖 ⟩ → ( ¬ 𝑞 𝑈𝑎 , 𝑏 , 𝑐 ⟩ ↔ ¬ ( ( 𝑔𝐴𝐵𝑖𝐶 ) ∧ ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ ( 𝑔𝑎𝑏𝑖𝑐 ) ) ) ) )
194 189 193 imbi12d ( 𝑞 = ⟨ 𝑔 , , 𝑖 ⟩ → ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 𝑞𝑠 ) → ¬ 𝑞 𝑈𝑎 , 𝑏 , 𝑐 ⟩ ) ↔ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ ⟨ 𝑔 , , 𝑖 ⟩ ∈ 𝑠 ) → ¬ ( ( 𝑔𝐴𝐵𝑖𝐶 ) ∧ ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( ( ( 𝑔 𝑅 𝑎𝑔 = 𝑎 ) ∧ ( 𝑆 𝑏 = 𝑏 ) ∧ ( 𝑖 𝑇 𝑐𝑖 = 𝑐 ) ) ∧ ( 𝑔𝑎𝑏𝑖𝑐 ) ) ) ) ) )
195 187 194 mpbiri ( 𝑞 = ⟨ 𝑔 , , 𝑖 ⟩ → ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 𝑞𝑠 ) → ¬ 𝑞 𝑈𝑎 , 𝑏 , 𝑐 ⟩ ) )
196 195 com12 ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 𝑞𝑠 ) → ( 𝑞 = ⟨ 𝑔 , , 𝑖 ⟩ → ¬ 𝑞 𝑈𝑎 , 𝑏 , 𝑐 ⟩ ) )
197 196 exlimdv ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 𝑞𝑠 ) → ( ∃ 𝑖 𝑞 = ⟨ 𝑔 , , 𝑖 ⟩ → ¬ 𝑞 𝑈𝑎 , 𝑏 , 𝑐 ⟩ ) )
198 197 exlimdvv ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 𝑞𝑠 ) → ( ∃ 𝑔𝑖 𝑞 = ⟨ 𝑔 , , 𝑖 ⟩ → ¬ 𝑞 𝑈𝑎 , 𝑏 , 𝑐 ⟩ ) )
199 86 198 mpd ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) ∧ 𝑞𝑠 ) → ¬ 𝑞 𝑈𝑎 , 𝑏 , 𝑐 ⟩ )
200 199 ralrimiva ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) → ∀ 𝑞𝑠 ¬ 𝑞 𝑈𝑎 , 𝑏 , 𝑐 ⟩ )
201 breq2 ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ → ( 𝑞 𝑈 𝑝𝑞 𝑈𝑎 , 𝑏 , 𝑐 ⟩ ) )
202 201 notbid ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ → ( ¬ 𝑞 𝑈 𝑝 ↔ ¬ 𝑞 𝑈𝑎 , 𝑏 , 𝑐 ⟩ ) )
203 202 ralbidv ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ → ( ∀ 𝑞𝑠 ¬ 𝑞 𝑈 𝑝 ↔ ∀ 𝑞𝑠 ¬ 𝑞 𝑈𝑎 , 𝑏 , 𝑐 ⟩ ) )
204 203 rspcev ( ( ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∈ 𝑠 ∧ ∀ 𝑞𝑠 ¬ 𝑞 𝑈𝑎 , 𝑏 , 𝑐 ⟩ ) → ∃ 𝑝𝑠𝑞𝑠 ¬ 𝑞 𝑈 𝑝 )
205 81 200 204 syl2anc ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ∧ ∀ 𝑓 ∈ ( 𝑠 “ { ⟨ 𝑎 , 𝑏 ⟩ } ) ¬ 𝑓 𝑇 𝑐 ) ) → ∃ 𝑝𝑠𝑞𝑠 ¬ 𝑞 𝑈 𝑝 )
206 74 205 rexlimddv ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) ∧ ( 𝑏 ∈ ( dom 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑒 ∈ ( dom 𝑠 “ { 𝑎 } ) ¬ 𝑒 𝑆 𝑏 ) ) → ∃ 𝑝𝑠𝑞𝑠 ¬ 𝑞 𝑈 𝑝 )
207 53 206 rexlimddv ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom dom 𝑠 ∧ ∀ 𝑑 ∈ dom dom 𝑠 ¬ 𝑑 𝑅 𝑎 ) ) → ∃ 𝑝𝑠𝑞𝑠 ¬ 𝑞 𝑈 𝑝 )
208 36 207 rexlimddv ( ( 𝜑 ∧ ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) ) → ∃ 𝑝𝑠𝑞𝑠 ¬ 𝑞 𝑈 𝑝 )
209 208 ex ( 𝜑 → ( ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) → ∃ 𝑝𝑠𝑞𝑠 ¬ 𝑞 𝑈 𝑝 ) )
210 209 alrimiv ( 𝜑 → ∀ 𝑠 ( ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) → ∃ 𝑝𝑠𝑞𝑠 ¬ 𝑞 𝑈 𝑝 ) )
211 df-fr ( 𝑈 Fr ( ( 𝐴 × 𝐵 ) × 𝐶 ) ↔ ∀ 𝑠 ( ( 𝑠 ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑠 ≠ ∅ ) → ∃ 𝑝𝑠𝑞𝑠 ¬ 𝑞 𝑈 𝑝 ) )
212 210 211 sylibr ( 𝜑𝑈 Fr ( ( 𝐴 × 𝐵 ) × 𝐶 ) )