Step |
Hyp |
Ref |
Expression |
1 |
|
fseq1m1p1.1 |
⊢ 𝐻 = { 〈 𝑁 , 𝐵 〉 } |
2 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
3 |
|
eqid |
⊢ { 〈 ( ( 𝑁 − 1 ) + 1 ) , 𝐵 〉 } = { 〈 ( ( 𝑁 − 1 ) + 1 ) , 𝐵 〉 } |
4 |
3
|
fseq1p1m1 |
⊢ ( ( 𝑁 − 1 ) ∈ ℕ0 → ( ( 𝐹 : ( 1 ... ( 𝑁 − 1 ) ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ { 〈 ( ( 𝑁 − 1 ) + 1 ) , 𝐵 〉 } ) ) ↔ ( 𝐺 : ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( ( 𝑁 − 1 ) + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... ( 𝑁 − 1 ) ) ) ) ) ) |
5 |
2 4
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝐹 : ( 1 ... ( 𝑁 − 1 ) ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ { 〈 ( ( 𝑁 − 1 ) + 1 ) , 𝐵 〉 } ) ) ↔ ( 𝐺 : ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( ( 𝑁 − 1 ) + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... ( 𝑁 − 1 ) ) ) ) ) ) |
6 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
7 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
8 |
|
npcan |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
9 |
6 7 8
|
sylancl |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
10 |
9
|
opeq1d |
⊢ ( 𝑁 ∈ ℕ → 〈 ( ( 𝑁 − 1 ) + 1 ) , 𝐵 〉 = 〈 𝑁 , 𝐵 〉 ) |
11 |
10
|
sneqd |
⊢ ( 𝑁 ∈ ℕ → { 〈 ( ( 𝑁 − 1 ) + 1 ) , 𝐵 〉 } = { 〈 𝑁 , 𝐵 〉 } ) |
12 |
11 1
|
eqtr4di |
⊢ ( 𝑁 ∈ ℕ → { 〈 ( ( 𝑁 − 1 ) + 1 ) , 𝐵 〉 } = 𝐻 ) |
13 |
12
|
uneq2d |
⊢ ( 𝑁 ∈ ℕ → ( 𝐹 ∪ { 〈 ( ( 𝑁 − 1 ) + 1 ) , 𝐵 〉 } ) = ( 𝐹 ∪ 𝐻 ) ) |
14 |
13
|
eqeq2d |
⊢ ( 𝑁 ∈ ℕ → ( 𝐺 = ( 𝐹 ∪ { 〈 ( ( 𝑁 − 1 ) + 1 ) , 𝐵 〉 } ) ↔ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) |
15 |
14
|
3anbi3d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝐹 : ( 1 ... ( 𝑁 − 1 ) ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ { 〈 ( ( 𝑁 − 1 ) + 1 ) , 𝐵 〉 } ) ) ↔ ( 𝐹 : ( 1 ... ( 𝑁 − 1 ) ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) ) |
16 |
9
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 1 ... 𝑁 ) ) |
17 |
16
|
feq2d |
⊢ ( 𝑁 ∈ ℕ → ( 𝐺 : ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) ⟶ 𝐴 ↔ 𝐺 : ( 1 ... 𝑁 ) ⟶ 𝐴 ) ) |
18 |
9
|
fveqeq2d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝐺 ‘ ( ( 𝑁 − 1 ) + 1 ) ) = 𝐵 ↔ ( 𝐺 ‘ 𝑁 ) = 𝐵 ) ) |
19 |
17 18
|
3anbi12d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝐺 : ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( ( 𝑁 − 1 ) + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... ( 𝑁 − 1 ) ) ) ) ↔ ( 𝐺 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑁 ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... ( 𝑁 − 1 ) ) ) ) ) ) |
20 |
5 15 19
|
3bitr3d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝐹 : ( 1 ... ( 𝑁 − 1 ) ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ↔ ( 𝐺 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ ( 𝐺 ‘ 𝑁 ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... ( 𝑁 − 1 ) ) ) ) ) ) |