| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fseq1m1p1.1 | ⊢ 𝐻  =  { 〈 𝑁 ,  𝐵 〉 } | 
						
							| 2 |  | nnm1nn0 | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  −  1 )  ∈  ℕ0 ) | 
						
							| 3 |  | eqid | ⊢ { 〈 ( ( 𝑁  −  1 )  +  1 ) ,  𝐵 〉 }  =  { 〈 ( ( 𝑁  −  1 )  +  1 ) ,  𝐵 〉 } | 
						
							| 4 | 3 | fseq1p1m1 | ⊢ ( ( 𝑁  −  1 )  ∈  ℕ0  →  ( ( 𝐹 : ( 1 ... ( 𝑁  −  1 ) ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  { 〈 ( ( 𝑁  −  1 )  +  1 ) ,  𝐵 〉 } ) )  ↔  ( 𝐺 : ( 1 ... ( ( 𝑁  −  1 )  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( ( 𝑁  −  1 )  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... ( 𝑁  −  1 ) ) ) ) ) ) | 
						
							| 5 | 2 4 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝐹 : ( 1 ... ( 𝑁  −  1 ) ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  { 〈 ( ( 𝑁  −  1 )  +  1 ) ,  𝐵 〉 } ) )  ↔  ( 𝐺 : ( 1 ... ( ( 𝑁  −  1 )  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( ( 𝑁  −  1 )  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... ( 𝑁  −  1 ) ) ) ) ) ) | 
						
							| 6 |  | nncn | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ ) | 
						
							| 7 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 8 |  | npcan | ⊢ ( ( 𝑁  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 9 | 6 7 8 | sylancl | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 10 | 9 | opeq1d | ⊢ ( 𝑁  ∈  ℕ  →  〈 ( ( 𝑁  −  1 )  +  1 ) ,  𝐵 〉  =  〈 𝑁 ,  𝐵 〉 ) | 
						
							| 11 | 10 | sneqd | ⊢ ( 𝑁  ∈  ℕ  →  { 〈 ( ( 𝑁  −  1 )  +  1 ) ,  𝐵 〉 }  =  { 〈 𝑁 ,  𝐵 〉 } ) | 
						
							| 12 | 11 1 | eqtr4di | ⊢ ( 𝑁  ∈  ℕ  →  { 〈 ( ( 𝑁  −  1 )  +  1 ) ,  𝐵 〉 }  =  𝐻 ) | 
						
							| 13 | 12 | uneq2d | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐹  ∪  { 〈 ( ( 𝑁  −  1 )  +  1 ) ,  𝐵 〉 } )  =  ( 𝐹  ∪  𝐻 ) ) | 
						
							| 14 | 13 | eqeq2d | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐺  =  ( 𝐹  ∪  { 〈 ( ( 𝑁  −  1 )  +  1 ) ,  𝐵 〉 } )  ↔  𝐺  =  ( 𝐹  ∪  𝐻 ) ) ) | 
						
							| 15 | 14 | 3anbi3d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝐹 : ( 1 ... ( 𝑁  −  1 ) ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  { 〈 ( ( 𝑁  −  1 )  +  1 ) ,  𝐵 〉 } ) )  ↔  ( 𝐹 : ( 1 ... ( 𝑁  −  1 ) ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) ) ) | 
						
							| 16 | 9 | oveq2d | ⊢ ( 𝑁  ∈  ℕ  →  ( 1 ... ( ( 𝑁  −  1 )  +  1 ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 17 | 16 | feq2d | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐺 : ( 1 ... ( ( 𝑁  −  1 )  +  1 ) ) ⟶ 𝐴  ↔  𝐺 : ( 1 ... 𝑁 ) ⟶ 𝐴 ) ) | 
						
							| 18 | 9 | fveqeq2d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝐺 ‘ ( ( 𝑁  −  1 )  +  1 ) )  =  𝐵  ↔  ( 𝐺 ‘ 𝑁 )  =  𝐵 ) ) | 
						
							| 19 | 17 18 | 3anbi12d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝐺 : ( 1 ... ( ( 𝑁  −  1 )  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( ( 𝑁  −  1 )  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... ( 𝑁  −  1 ) ) ) )  ↔  ( 𝐺 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑁 )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... ( 𝑁  −  1 ) ) ) ) ) ) | 
						
							| 20 | 5 15 19 | 3bitr3d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝐹 : ( 1 ... ( 𝑁  −  1 ) ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) )  ↔  ( 𝐺 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  ( 𝐺 ‘ 𝑁 )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... ( 𝑁  −  1 ) ) ) ) ) ) |