| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fseq1p1m1.1 | ⊢ 𝐻  =  { 〈 ( 𝑁  +  1 ) ,  𝐵 〉 } | 
						
							| 2 |  | simpr1 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ) | 
						
							| 3 |  | nn0p1nn | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℕ ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  ( 𝑁  +  1 )  ∈  ℕ ) | 
						
							| 5 |  | simpr2 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  𝐵  ∈  𝐴 ) | 
						
							| 6 |  | fsng | ⊢ ( ( ( 𝑁  +  1 )  ∈  ℕ  ∧  𝐵  ∈  𝐴 )  →  ( 𝐻 : { ( 𝑁  +  1 ) } ⟶ { 𝐵 }  ↔  𝐻  =  { 〈 ( 𝑁  +  1 ) ,  𝐵 〉 } ) ) | 
						
							| 7 | 1 6 | mpbiri | ⊢ ( ( ( 𝑁  +  1 )  ∈  ℕ  ∧  𝐵  ∈  𝐴 )  →  𝐻 : { ( 𝑁  +  1 ) } ⟶ { 𝐵 } ) | 
						
							| 8 | 4 5 7 | syl2anc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  𝐻 : { ( 𝑁  +  1 ) } ⟶ { 𝐵 } ) | 
						
							| 9 | 5 | snssd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  { 𝐵 }  ⊆  𝐴 ) | 
						
							| 10 | 8 9 | fssd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  𝐻 : { ( 𝑁  +  1 ) } ⟶ 𝐴 ) | 
						
							| 11 |  | fzp1disj | ⊢ ( ( 1 ... 𝑁 )  ∩  { ( 𝑁  +  1 ) } )  =  ∅ | 
						
							| 12 | 11 | a1i | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  ( ( 1 ... 𝑁 )  ∩  { ( 𝑁  +  1 ) } )  =  ∅ ) | 
						
							| 13 | 2 10 12 | fun2d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  ( 𝐹  ∪  𝐻 ) : ( ( 1 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } ) ⟶ 𝐴 ) | 
						
							| 14 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 15 |  | simpl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 16 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 17 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 18 | 17 | fveq2i | ⊢ ( ℤ≥ ‘ ( 1  −  1 ) )  =  ( ℤ≥ ‘ 0 ) | 
						
							| 19 | 16 18 | eqtr4i | ⊢ ℕ0  =  ( ℤ≥ ‘ ( 1  −  1 ) ) | 
						
							| 20 | 15 19 | eleqtrdi | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  𝑁  ∈  ( ℤ≥ ‘ ( 1  −  1 ) ) ) | 
						
							| 21 |  | fzsuc2 | ⊢ ( ( 1  ∈  ℤ  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 1  −  1 ) ) )  →  ( 1 ... ( 𝑁  +  1 ) )  =  ( ( 1 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } ) ) | 
						
							| 22 | 14 20 21 | sylancr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  ( 1 ... ( 𝑁  +  1 ) )  =  ( ( 1 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } ) ) | 
						
							| 23 | 22 | eqcomd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  ( ( 1 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } )  =  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 24 | 23 | feq2d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  ( ( 𝐹  ∪  𝐻 ) : ( ( 1 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } ) ⟶ 𝐴  ↔  ( 𝐹  ∪  𝐻 ) : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴 ) ) | 
						
							| 25 | 13 24 | mpbid | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  ( 𝐹  ∪  𝐻 ) : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴 ) | 
						
							| 26 |  | simpr3 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  𝐺  =  ( 𝐹  ∪  𝐻 ) ) | 
						
							| 27 | 26 | feq1d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ↔  ( 𝐹  ∪  𝐻 ) : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴 ) ) | 
						
							| 28 | 25 27 | mpbird | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴 ) | 
						
							| 29 |  | ovex | ⊢ ( 𝑁  +  1 )  ∈  V | 
						
							| 30 | 29 | snid | ⊢ ( 𝑁  +  1 )  ∈  { ( 𝑁  +  1 ) } | 
						
							| 31 |  | fvres | ⊢ ( ( 𝑁  +  1 )  ∈  { ( 𝑁  +  1 ) }  →  ( ( 𝐺  ↾  { ( 𝑁  +  1 ) } ) ‘ ( 𝑁  +  1 ) )  =  ( 𝐺 ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 32 | 30 31 | ax-mp | ⊢ ( ( 𝐺  ↾  { ( 𝑁  +  1 ) } ) ‘ ( 𝑁  +  1 ) )  =  ( 𝐺 ‘ ( 𝑁  +  1 ) ) | 
						
							| 33 | 26 | reseq1d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  ( 𝐺  ↾  { ( 𝑁  +  1 ) } )  =  ( ( 𝐹  ∪  𝐻 )  ↾  { ( 𝑁  +  1 ) } ) ) | 
						
							| 34 |  | ffn | ⊢ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  →  𝐹  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 35 |  | fnresdisj | ⊢ ( 𝐹  Fn  ( 1 ... 𝑁 )  →  ( ( ( 1 ... 𝑁 )  ∩  { ( 𝑁  +  1 ) } )  =  ∅  ↔  ( 𝐹  ↾  { ( 𝑁  +  1 ) } )  =  ∅ ) ) | 
						
							| 36 | 2 34 35 | 3syl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  ( ( ( 1 ... 𝑁 )  ∩  { ( 𝑁  +  1 ) } )  =  ∅  ↔  ( 𝐹  ↾  { ( 𝑁  +  1 ) } )  =  ∅ ) ) | 
						
							| 37 | 12 36 | mpbid | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  ( 𝐹  ↾  { ( 𝑁  +  1 ) } )  =  ∅ ) | 
						
							| 38 | 37 | uneq1d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  ( ( 𝐹  ↾  { ( 𝑁  +  1 ) } )  ∪  ( 𝐻  ↾  { ( 𝑁  +  1 ) } ) )  =  ( ∅  ∪  ( 𝐻  ↾  { ( 𝑁  +  1 ) } ) ) ) | 
						
							| 39 |  | resundir | ⊢ ( ( 𝐹  ∪  𝐻 )  ↾  { ( 𝑁  +  1 ) } )  =  ( ( 𝐹  ↾  { ( 𝑁  +  1 ) } )  ∪  ( 𝐻  ↾  { ( 𝑁  +  1 ) } ) ) | 
						
							| 40 |  | uncom | ⊢ ( ∅  ∪  ( 𝐻  ↾  { ( 𝑁  +  1 ) } ) )  =  ( ( 𝐻  ↾  { ( 𝑁  +  1 ) } )  ∪  ∅ ) | 
						
							| 41 |  | un0 | ⊢ ( ( 𝐻  ↾  { ( 𝑁  +  1 ) } )  ∪  ∅ )  =  ( 𝐻  ↾  { ( 𝑁  +  1 ) } ) | 
						
							| 42 | 40 41 | eqtr2i | ⊢ ( 𝐻  ↾  { ( 𝑁  +  1 ) } )  =  ( ∅  ∪  ( 𝐻  ↾  { ( 𝑁  +  1 ) } ) ) | 
						
							| 43 | 38 39 42 | 3eqtr4g | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  ( ( 𝐹  ∪  𝐻 )  ↾  { ( 𝑁  +  1 ) } )  =  ( 𝐻  ↾  { ( 𝑁  +  1 ) } ) ) | 
						
							| 44 |  | ffn | ⊢ ( 𝐻 : { ( 𝑁  +  1 ) } ⟶ 𝐴  →  𝐻  Fn  { ( 𝑁  +  1 ) } ) | 
						
							| 45 |  | fnresdm | ⊢ ( 𝐻  Fn  { ( 𝑁  +  1 ) }  →  ( 𝐻  ↾  { ( 𝑁  +  1 ) } )  =  𝐻 ) | 
						
							| 46 | 10 44 45 | 3syl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  ( 𝐻  ↾  { ( 𝑁  +  1 ) } )  =  𝐻 ) | 
						
							| 47 | 33 43 46 | 3eqtrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  ( 𝐺  ↾  { ( 𝑁  +  1 ) } )  =  𝐻 ) | 
						
							| 48 | 47 | fveq1d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  ( ( 𝐺  ↾  { ( 𝑁  +  1 ) } ) ‘ ( 𝑁  +  1 ) )  =  ( 𝐻 ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 49 | 1 | fveq1i | ⊢ ( 𝐻 ‘ ( 𝑁  +  1 ) )  =  ( { 〈 ( 𝑁  +  1 ) ,  𝐵 〉 } ‘ ( 𝑁  +  1 ) ) | 
						
							| 50 |  | fvsng | ⊢ ( ( ( 𝑁  +  1 )  ∈  ℕ  ∧  𝐵  ∈  𝐴 )  →  ( { 〈 ( 𝑁  +  1 ) ,  𝐵 〉 } ‘ ( 𝑁  +  1 ) )  =  𝐵 ) | 
						
							| 51 | 49 50 | eqtrid | ⊢ ( ( ( 𝑁  +  1 )  ∈  ℕ  ∧  𝐵  ∈  𝐴 )  →  ( 𝐻 ‘ ( 𝑁  +  1 ) )  =  𝐵 ) | 
						
							| 52 | 4 5 51 | syl2anc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  ( 𝐻 ‘ ( 𝑁  +  1 ) )  =  𝐵 ) | 
						
							| 53 | 48 52 | eqtrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  ( ( 𝐺  ↾  { ( 𝑁  +  1 ) } ) ‘ ( 𝑁  +  1 ) )  =  𝐵 ) | 
						
							| 54 | 32 53 | eqtr3id | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵 ) | 
						
							| 55 | 26 | reseq1d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  ( 𝐺  ↾  ( 1 ... 𝑁 ) )  =  ( ( 𝐹  ∪  𝐻 )  ↾  ( 1 ... 𝑁 ) ) ) | 
						
							| 56 |  | incom | ⊢ ( { ( 𝑁  +  1 ) }  ∩  ( 1 ... 𝑁 ) )  =  ( ( 1 ... 𝑁 )  ∩  { ( 𝑁  +  1 ) } ) | 
						
							| 57 | 56 12 | eqtrid | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  ( { ( 𝑁  +  1 ) }  ∩  ( 1 ... 𝑁 ) )  =  ∅ ) | 
						
							| 58 |  | ffn | ⊢ ( 𝐻 : { ( 𝑁  +  1 ) } ⟶ { 𝐵 }  →  𝐻  Fn  { ( 𝑁  +  1 ) } ) | 
						
							| 59 |  | fnresdisj | ⊢ ( 𝐻  Fn  { ( 𝑁  +  1 ) }  →  ( ( { ( 𝑁  +  1 ) }  ∩  ( 1 ... 𝑁 ) )  =  ∅  ↔  ( 𝐻  ↾  ( 1 ... 𝑁 ) )  =  ∅ ) ) | 
						
							| 60 | 8 58 59 | 3syl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  ( ( { ( 𝑁  +  1 ) }  ∩  ( 1 ... 𝑁 ) )  =  ∅  ↔  ( 𝐻  ↾  ( 1 ... 𝑁 ) )  =  ∅ ) ) | 
						
							| 61 | 57 60 | mpbid | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  ( 𝐻  ↾  ( 1 ... 𝑁 ) )  =  ∅ ) | 
						
							| 62 | 61 | uneq2d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  ( ( 𝐹  ↾  ( 1 ... 𝑁 ) )  ∪  ( 𝐻  ↾  ( 1 ... 𝑁 ) ) )  =  ( ( 𝐹  ↾  ( 1 ... 𝑁 ) )  ∪  ∅ ) ) | 
						
							| 63 |  | resundir | ⊢ ( ( 𝐹  ∪  𝐻 )  ↾  ( 1 ... 𝑁 ) )  =  ( ( 𝐹  ↾  ( 1 ... 𝑁 ) )  ∪  ( 𝐻  ↾  ( 1 ... 𝑁 ) ) ) | 
						
							| 64 |  | un0 | ⊢ ( ( 𝐹  ↾  ( 1 ... 𝑁 ) )  ∪  ∅ )  =  ( 𝐹  ↾  ( 1 ... 𝑁 ) ) | 
						
							| 65 | 64 | eqcomi | ⊢ ( 𝐹  ↾  ( 1 ... 𝑁 ) )  =  ( ( 𝐹  ↾  ( 1 ... 𝑁 ) )  ∪  ∅ ) | 
						
							| 66 | 62 63 65 | 3eqtr4g | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  ( ( 𝐹  ∪  𝐻 )  ↾  ( 1 ... 𝑁 ) )  =  ( 𝐹  ↾  ( 1 ... 𝑁 ) ) ) | 
						
							| 67 |  | fnresdm | ⊢ ( 𝐹  Fn  ( 1 ... 𝑁 )  →  ( 𝐹  ↾  ( 1 ... 𝑁 ) )  =  𝐹 ) | 
						
							| 68 | 2 34 67 | 3syl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  ( 𝐹  ↾  ( 1 ... 𝑁 ) )  =  𝐹 ) | 
						
							| 69 | 55 66 68 | 3eqtrrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) | 
						
							| 70 | 28 54 69 | 3jca | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) )  →  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) ) | 
						
							| 71 |  | simpr1 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) )  →  𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴 ) | 
						
							| 72 |  | fzssp1 | ⊢ ( 1 ... 𝑁 )  ⊆  ( 1 ... ( 𝑁  +  1 ) ) | 
						
							| 73 |  | fssres | ⊢ ( ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 1 ... 𝑁 )  ⊆  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) : ( 1 ... 𝑁 ) ⟶ 𝐴 ) | 
						
							| 74 | 71 72 73 | sylancl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) )  →  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) : ( 1 ... 𝑁 ) ⟶ 𝐴 ) | 
						
							| 75 |  | simpr3 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) )  →  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) | 
						
							| 76 | 75 | feq1d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) )  →  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ↔  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) : ( 1 ... 𝑁 ) ⟶ 𝐴 ) ) | 
						
							| 77 | 74 76 | mpbird | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) )  →  𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ) | 
						
							| 78 |  | simpr2 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) )  →  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵 ) | 
						
							| 79 | 3 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) )  →  ( 𝑁  +  1 )  ∈  ℕ ) | 
						
							| 80 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 81 | 79 80 | eleqtrdi | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) )  →  ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 82 |  | eluzfz2 | ⊢ ( ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 1 )  →  ( 𝑁  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 83 | 81 82 | syl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) )  →  ( 𝑁  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 84 | 71 83 | ffvelcdmd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) )  →  ( 𝐺 ‘ ( 𝑁  +  1 ) )  ∈  𝐴 ) | 
						
							| 85 | 78 84 | eqeltrrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) )  →  𝐵  ∈  𝐴 ) | 
						
							| 86 |  | ffn | ⊢ ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  →  𝐺  Fn  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 87 | 71 86 | syl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) )  →  𝐺  Fn  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 88 |  | fnressn | ⊢ ( ( 𝐺  Fn  ( 1 ... ( 𝑁  +  1 ) )  ∧  ( 𝑁  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝐺  ↾  { ( 𝑁  +  1 ) } )  =  { 〈 ( 𝑁  +  1 ) ,  ( 𝐺 ‘ ( 𝑁  +  1 ) ) 〉 } ) | 
						
							| 89 | 87 83 88 | syl2anc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) )  →  ( 𝐺  ↾  { ( 𝑁  +  1 ) } )  =  { 〈 ( 𝑁  +  1 ) ,  ( 𝐺 ‘ ( 𝑁  +  1 ) ) 〉 } ) | 
						
							| 90 |  | opeq2 | ⊢ ( ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  →  〈 ( 𝑁  +  1 ) ,  ( 𝐺 ‘ ( 𝑁  +  1 ) ) 〉  =  〈 ( 𝑁  +  1 ) ,  𝐵 〉 ) | 
						
							| 91 | 90 | sneqd | ⊢ ( ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  →  { 〈 ( 𝑁  +  1 ) ,  ( 𝐺 ‘ ( 𝑁  +  1 ) ) 〉 }  =  { 〈 ( 𝑁  +  1 ) ,  𝐵 〉 } ) | 
						
							| 92 | 78 91 | syl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) )  →  { 〈 ( 𝑁  +  1 ) ,  ( 𝐺 ‘ ( 𝑁  +  1 ) ) 〉 }  =  { 〈 ( 𝑁  +  1 ) ,  𝐵 〉 } ) | 
						
							| 93 | 89 92 | eqtrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) )  →  ( 𝐺  ↾  { ( 𝑁  +  1 ) } )  =  { 〈 ( 𝑁  +  1 ) ,  𝐵 〉 } ) | 
						
							| 94 | 1 93 | eqtr4id | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) )  →  𝐻  =  ( 𝐺  ↾  { ( 𝑁  +  1 ) } ) ) | 
						
							| 95 | 75 94 | uneq12d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) )  →  ( 𝐹  ∪  𝐻 )  =  ( ( 𝐺  ↾  ( 1 ... 𝑁 ) )  ∪  ( 𝐺  ↾  { ( 𝑁  +  1 ) } ) ) ) | 
						
							| 96 |  | simpl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 97 | 96 19 | eleqtrdi | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) )  →  𝑁  ∈  ( ℤ≥ ‘ ( 1  −  1 ) ) ) | 
						
							| 98 | 14 97 21 | sylancr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) )  →  ( 1 ... ( 𝑁  +  1 ) )  =  ( ( 1 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } ) ) | 
						
							| 99 | 98 | reseq2d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) )  →  ( 𝐺  ↾  ( 1 ... ( 𝑁  +  1 ) ) )  =  ( 𝐺  ↾  ( ( 1 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } ) ) ) | 
						
							| 100 |  | resundi | ⊢ ( 𝐺  ↾  ( ( 1 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } ) )  =  ( ( 𝐺  ↾  ( 1 ... 𝑁 ) )  ∪  ( 𝐺  ↾  { ( 𝑁  +  1 ) } ) ) | 
						
							| 101 | 99 100 | eqtr2di | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) )  →  ( ( 𝐺  ↾  ( 1 ... 𝑁 ) )  ∪  ( 𝐺  ↾  { ( 𝑁  +  1 ) } ) )  =  ( 𝐺  ↾  ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 102 |  | fnresdm | ⊢ ( 𝐺  Fn  ( 1 ... ( 𝑁  +  1 ) )  →  ( 𝐺  ↾  ( 1 ... ( 𝑁  +  1 ) ) )  =  𝐺 ) | 
						
							| 103 | 71 86 102 | 3syl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) )  →  ( 𝐺  ↾  ( 1 ... ( 𝑁  +  1 ) ) )  =  𝐺 ) | 
						
							| 104 | 95 101 103 | 3eqtrrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) )  →  𝐺  =  ( 𝐹  ∪  𝐻 ) ) | 
						
							| 105 | 77 85 104 | 3jca | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) )  →  ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) ) ) | 
						
							| 106 | 70 105 | impbida | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴  ∧  𝐵  ∈  𝐴  ∧  𝐺  =  ( 𝐹  ∪  𝐻 ) )  ↔  ( 𝐺 : ( 1 ... ( 𝑁  +  1 ) ) ⟶ 𝐴  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  𝐵  ∧  𝐹  =  ( 𝐺  ↾  ( 1 ... 𝑁 ) ) ) ) ) |