| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fseq1p1m1.1 |
⊢ 𝐻 = { 〈 ( 𝑁 + 1 ) , 𝐵 〉 } |
| 2 |
|
simpr1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ) |
| 3 |
|
nn0p1nn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → ( 𝑁 + 1 ) ∈ ℕ ) |
| 5 |
|
simpr2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → 𝐵 ∈ 𝐴 ) |
| 6 |
|
fsng |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ ∧ 𝐵 ∈ 𝐴 ) → ( 𝐻 : { ( 𝑁 + 1 ) } ⟶ { 𝐵 } ↔ 𝐻 = { 〈 ( 𝑁 + 1 ) , 𝐵 〉 } ) ) |
| 7 |
1 6
|
mpbiri |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ ∧ 𝐵 ∈ 𝐴 ) → 𝐻 : { ( 𝑁 + 1 ) } ⟶ { 𝐵 } ) |
| 8 |
4 5 7
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → 𝐻 : { ( 𝑁 + 1 ) } ⟶ { 𝐵 } ) |
| 9 |
5
|
snssd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → { 𝐵 } ⊆ 𝐴 ) |
| 10 |
8 9
|
fssd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → 𝐻 : { ( 𝑁 + 1 ) } ⟶ 𝐴 ) |
| 11 |
|
fzp1disj |
⊢ ( ( 1 ... 𝑁 ) ∩ { ( 𝑁 + 1 ) } ) = ∅ |
| 12 |
11
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → ( ( 1 ... 𝑁 ) ∩ { ( 𝑁 + 1 ) } ) = ∅ ) |
| 13 |
2 10 12
|
fun2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → ( 𝐹 ∪ 𝐻 ) : ( ( 1 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ⟶ 𝐴 ) |
| 14 |
|
1z |
⊢ 1 ∈ ℤ |
| 15 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → 𝑁 ∈ ℕ0 ) |
| 16 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 17 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 18 |
17
|
fveq2i |
⊢ ( ℤ≥ ‘ ( 1 − 1 ) ) = ( ℤ≥ ‘ 0 ) |
| 19 |
16 18
|
eqtr4i |
⊢ ℕ0 = ( ℤ≥ ‘ ( 1 − 1 ) ) |
| 20 |
15 19
|
eleqtrdi |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 1 − 1 ) ) ) |
| 21 |
|
fzsuc2 |
⊢ ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 1 − 1 ) ) ) → ( 1 ... ( 𝑁 + 1 ) ) = ( ( 1 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ) |
| 22 |
14 20 21
|
sylancr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → ( 1 ... ( 𝑁 + 1 ) ) = ( ( 1 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ) |
| 23 |
22
|
eqcomd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → ( ( 1 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) = ( 1 ... ( 𝑁 + 1 ) ) ) |
| 24 |
23
|
feq2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → ( ( 𝐹 ∪ 𝐻 ) : ( ( 1 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ⟶ 𝐴 ↔ ( 𝐹 ∪ 𝐻 ) : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ) ) |
| 25 |
13 24
|
mpbid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → ( 𝐹 ∪ 𝐻 ) : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ) |
| 26 |
|
simpr3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → 𝐺 = ( 𝐹 ∪ 𝐻 ) ) |
| 27 |
26
|
feq1d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ↔ ( 𝐹 ∪ 𝐻 ) : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ) ) |
| 28 |
25 27
|
mpbird |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ) |
| 29 |
|
ovex |
⊢ ( 𝑁 + 1 ) ∈ V |
| 30 |
29
|
snid |
⊢ ( 𝑁 + 1 ) ∈ { ( 𝑁 + 1 ) } |
| 31 |
|
fvres |
⊢ ( ( 𝑁 + 1 ) ∈ { ( 𝑁 + 1 ) } → ( ( 𝐺 ↾ { ( 𝑁 + 1 ) } ) ‘ ( 𝑁 + 1 ) ) = ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) |
| 32 |
30 31
|
ax-mp |
⊢ ( ( 𝐺 ↾ { ( 𝑁 + 1 ) } ) ‘ ( 𝑁 + 1 ) ) = ( 𝐺 ‘ ( 𝑁 + 1 ) ) |
| 33 |
26
|
reseq1d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → ( 𝐺 ↾ { ( 𝑁 + 1 ) } ) = ( ( 𝐹 ∪ 𝐻 ) ↾ { ( 𝑁 + 1 ) } ) ) |
| 34 |
|
ffn |
⊢ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 → 𝐹 Fn ( 1 ... 𝑁 ) ) |
| 35 |
|
fnresdisj |
⊢ ( 𝐹 Fn ( 1 ... 𝑁 ) → ( ( ( 1 ... 𝑁 ) ∩ { ( 𝑁 + 1 ) } ) = ∅ ↔ ( 𝐹 ↾ { ( 𝑁 + 1 ) } ) = ∅ ) ) |
| 36 |
2 34 35
|
3syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → ( ( ( 1 ... 𝑁 ) ∩ { ( 𝑁 + 1 ) } ) = ∅ ↔ ( 𝐹 ↾ { ( 𝑁 + 1 ) } ) = ∅ ) ) |
| 37 |
12 36
|
mpbid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → ( 𝐹 ↾ { ( 𝑁 + 1 ) } ) = ∅ ) |
| 38 |
37
|
uneq1d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → ( ( 𝐹 ↾ { ( 𝑁 + 1 ) } ) ∪ ( 𝐻 ↾ { ( 𝑁 + 1 ) } ) ) = ( ∅ ∪ ( 𝐻 ↾ { ( 𝑁 + 1 ) } ) ) ) |
| 39 |
|
resundir |
⊢ ( ( 𝐹 ∪ 𝐻 ) ↾ { ( 𝑁 + 1 ) } ) = ( ( 𝐹 ↾ { ( 𝑁 + 1 ) } ) ∪ ( 𝐻 ↾ { ( 𝑁 + 1 ) } ) ) |
| 40 |
|
uncom |
⊢ ( ∅ ∪ ( 𝐻 ↾ { ( 𝑁 + 1 ) } ) ) = ( ( 𝐻 ↾ { ( 𝑁 + 1 ) } ) ∪ ∅ ) |
| 41 |
|
un0 |
⊢ ( ( 𝐻 ↾ { ( 𝑁 + 1 ) } ) ∪ ∅ ) = ( 𝐻 ↾ { ( 𝑁 + 1 ) } ) |
| 42 |
40 41
|
eqtr2i |
⊢ ( 𝐻 ↾ { ( 𝑁 + 1 ) } ) = ( ∅ ∪ ( 𝐻 ↾ { ( 𝑁 + 1 ) } ) ) |
| 43 |
38 39 42
|
3eqtr4g |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → ( ( 𝐹 ∪ 𝐻 ) ↾ { ( 𝑁 + 1 ) } ) = ( 𝐻 ↾ { ( 𝑁 + 1 ) } ) ) |
| 44 |
|
ffn |
⊢ ( 𝐻 : { ( 𝑁 + 1 ) } ⟶ 𝐴 → 𝐻 Fn { ( 𝑁 + 1 ) } ) |
| 45 |
|
fnresdm |
⊢ ( 𝐻 Fn { ( 𝑁 + 1 ) } → ( 𝐻 ↾ { ( 𝑁 + 1 ) } ) = 𝐻 ) |
| 46 |
10 44 45
|
3syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → ( 𝐻 ↾ { ( 𝑁 + 1 ) } ) = 𝐻 ) |
| 47 |
33 43 46
|
3eqtrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → ( 𝐺 ↾ { ( 𝑁 + 1 ) } ) = 𝐻 ) |
| 48 |
47
|
fveq1d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → ( ( 𝐺 ↾ { ( 𝑁 + 1 ) } ) ‘ ( 𝑁 + 1 ) ) = ( 𝐻 ‘ ( 𝑁 + 1 ) ) ) |
| 49 |
1
|
fveq1i |
⊢ ( 𝐻 ‘ ( 𝑁 + 1 ) ) = ( { 〈 ( 𝑁 + 1 ) , 𝐵 〉 } ‘ ( 𝑁 + 1 ) ) |
| 50 |
|
fvsng |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ ∧ 𝐵 ∈ 𝐴 ) → ( { 〈 ( 𝑁 + 1 ) , 𝐵 〉 } ‘ ( 𝑁 + 1 ) ) = 𝐵 ) |
| 51 |
49 50
|
eqtrid |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ ∧ 𝐵 ∈ 𝐴 ) → ( 𝐻 ‘ ( 𝑁 + 1 ) ) = 𝐵 ) |
| 52 |
4 5 51
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → ( 𝐻 ‘ ( 𝑁 + 1 ) ) = 𝐵 ) |
| 53 |
48 52
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → ( ( 𝐺 ↾ { ( 𝑁 + 1 ) } ) ‘ ( 𝑁 + 1 ) ) = 𝐵 ) |
| 54 |
32 53
|
eqtr3id |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ) |
| 55 |
26
|
reseq1d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → ( 𝐺 ↾ ( 1 ... 𝑁 ) ) = ( ( 𝐹 ∪ 𝐻 ) ↾ ( 1 ... 𝑁 ) ) ) |
| 56 |
|
incom |
⊢ ( { ( 𝑁 + 1 ) } ∩ ( 1 ... 𝑁 ) ) = ( ( 1 ... 𝑁 ) ∩ { ( 𝑁 + 1 ) } ) |
| 57 |
56 12
|
eqtrid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → ( { ( 𝑁 + 1 ) } ∩ ( 1 ... 𝑁 ) ) = ∅ ) |
| 58 |
|
ffn |
⊢ ( 𝐻 : { ( 𝑁 + 1 ) } ⟶ { 𝐵 } → 𝐻 Fn { ( 𝑁 + 1 ) } ) |
| 59 |
|
fnresdisj |
⊢ ( 𝐻 Fn { ( 𝑁 + 1 ) } → ( ( { ( 𝑁 + 1 ) } ∩ ( 1 ... 𝑁 ) ) = ∅ ↔ ( 𝐻 ↾ ( 1 ... 𝑁 ) ) = ∅ ) ) |
| 60 |
8 58 59
|
3syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → ( ( { ( 𝑁 + 1 ) } ∩ ( 1 ... 𝑁 ) ) = ∅ ↔ ( 𝐻 ↾ ( 1 ... 𝑁 ) ) = ∅ ) ) |
| 61 |
57 60
|
mpbid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → ( 𝐻 ↾ ( 1 ... 𝑁 ) ) = ∅ ) |
| 62 |
61
|
uneq2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → ( ( 𝐹 ↾ ( 1 ... 𝑁 ) ) ∪ ( 𝐻 ↾ ( 1 ... 𝑁 ) ) ) = ( ( 𝐹 ↾ ( 1 ... 𝑁 ) ) ∪ ∅ ) ) |
| 63 |
|
resundir |
⊢ ( ( 𝐹 ∪ 𝐻 ) ↾ ( 1 ... 𝑁 ) ) = ( ( 𝐹 ↾ ( 1 ... 𝑁 ) ) ∪ ( 𝐻 ↾ ( 1 ... 𝑁 ) ) ) |
| 64 |
|
un0 |
⊢ ( ( 𝐹 ↾ ( 1 ... 𝑁 ) ) ∪ ∅ ) = ( 𝐹 ↾ ( 1 ... 𝑁 ) ) |
| 65 |
64
|
eqcomi |
⊢ ( 𝐹 ↾ ( 1 ... 𝑁 ) ) = ( ( 𝐹 ↾ ( 1 ... 𝑁 ) ) ∪ ∅ ) |
| 66 |
62 63 65
|
3eqtr4g |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → ( ( 𝐹 ∪ 𝐻 ) ↾ ( 1 ... 𝑁 ) ) = ( 𝐹 ↾ ( 1 ... 𝑁 ) ) ) |
| 67 |
|
fnresdm |
⊢ ( 𝐹 Fn ( 1 ... 𝑁 ) → ( 𝐹 ↾ ( 1 ... 𝑁 ) ) = 𝐹 ) |
| 68 |
2 34 67
|
3syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → ( 𝐹 ↾ ( 1 ... 𝑁 ) ) = 𝐹 ) |
| 69 |
55 66 68
|
3eqtrrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) |
| 70 |
28 54 69
|
3jca |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) → ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) ) |
| 71 |
|
simpr1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) ) → 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ) |
| 72 |
|
fzssp1 |
⊢ ( 1 ... 𝑁 ) ⊆ ( 1 ... ( 𝑁 + 1 ) ) |
| 73 |
|
fssres |
⊢ ( ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 1 ... 𝑁 ) ⊆ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝐺 ↾ ( 1 ... 𝑁 ) ) : ( 1 ... 𝑁 ) ⟶ 𝐴 ) |
| 74 |
71 72 73
|
sylancl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) ) → ( 𝐺 ↾ ( 1 ... 𝑁 ) ) : ( 1 ... 𝑁 ) ⟶ 𝐴 ) |
| 75 |
|
simpr3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) ) → 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) |
| 76 |
75
|
feq1d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) ) → ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ↔ ( 𝐺 ↾ ( 1 ... 𝑁 ) ) : ( 1 ... 𝑁 ) ⟶ 𝐴 ) ) |
| 77 |
74 76
|
mpbird |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) ) → 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ) |
| 78 |
|
simpr2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) ) → ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ) |
| 79 |
3
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) ) → ( 𝑁 + 1 ) ∈ ℕ ) |
| 80 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 81 |
79 80
|
eleqtrdi |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 82 |
|
eluzfz2 |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( 𝑁 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 83 |
81 82
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) ) → ( 𝑁 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 84 |
71 83
|
ffvelcdmd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) ) → ( 𝐺 ‘ ( 𝑁 + 1 ) ) ∈ 𝐴 ) |
| 85 |
78 84
|
eqeltrrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) ) → 𝐵 ∈ 𝐴 ) |
| 86 |
|
ffn |
⊢ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 → 𝐺 Fn ( 1 ... ( 𝑁 + 1 ) ) ) |
| 87 |
71 86
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) ) → 𝐺 Fn ( 1 ... ( 𝑁 + 1 ) ) ) |
| 88 |
|
fnressn |
⊢ ( ( 𝐺 Fn ( 1 ... ( 𝑁 + 1 ) ) ∧ ( 𝑁 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝐺 ↾ { ( 𝑁 + 1 ) } ) = { 〈 ( 𝑁 + 1 ) , ( 𝐺 ‘ ( 𝑁 + 1 ) ) 〉 } ) |
| 89 |
87 83 88
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) ) → ( 𝐺 ↾ { ( 𝑁 + 1 ) } ) = { 〈 ( 𝑁 + 1 ) , ( 𝐺 ‘ ( 𝑁 + 1 ) ) 〉 } ) |
| 90 |
|
opeq2 |
⊢ ( ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 → 〈 ( 𝑁 + 1 ) , ( 𝐺 ‘ ( 𝑁 + 1 ) ) 〉 = 〈 ( 𝑁 + 1 ) , 𝐵 〉 ) |
| 91 |
90
|
sneqd |
⊢ ( ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 → { 〈 ( 𝑁 + 1 ) , ( 𝐺 ‘ ( 𝑁 + 1 ) ) 〉 } = { 〈 ( 𝑁 + 1 ) , 𝐵 〉 } ) |
| 92 |
78 91
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) ) → { 〈 ( 𝑁 + 1 ) , ( 𝐺 ‘ ( 𝑁 + 1 ) ) 〉 } = { 〈 ( 𝑁 + 1 ) , 𝐵 〉 } ) |
| 93 |
89 92
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) ) → ( 𝐺 ↾ { ( 𝑁 + 1 ) } ) = { 〈 ( 𝑁 + 1 ) , 𝐵 〉 } ) |
| 94 |
1 93
|
eqtr4id |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) ) → 𝐻 = ( 𝐺 ↾ { ( 𝑁 + 1 ) } ) ) |
| 95 |
75 94
|
uneq12d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) ) → ( 𝐹 ∪ 𝐻 ) = ( ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ∪ ( 𝐺 ↾ { ( 𝑁 + 1 ) } ) ) ) |
| 96 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) ) → 𝑁 ∈ ℕ0 ) |
| 97 |
96 19
|
eleqtrdi |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 1 − 1 ) ) ) |
| 98 |
14 97 21
|
sylancr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) ) → ( 1 ... ( 𝑁 + 1 ) ) = ( ( 1 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ) |
| 99 |
98
|
reseq2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) ) → ( 𝐺 ↾ ( 1 ... ( 𝑁 + 1 ) ) ) = ( 𝐺 ↾ ( ( 1 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ) ) |
| 100 |
|
resundi |
⊢ ( 𝐺 ↾ ( ( 1 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ) = ( ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ∪ ( 𝐺 ↾ { ( 𝑁 + 1 ) } ) ) |
| 101 |
99 100
|
eqtr2di |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) ) → ( ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ∪ ( 𝐺 ↾ { ( 𝑁 + 1 ) } ) ) = ( 𝐺 ↾ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
| 102 |
|
fnresdm |
⊢ ( 𝐺 Fn ( 1 ... ( 𝑁 + 1 ) ) → ( 𝐺 ↾ ( 1 ... ( 𝑁 + 1 ) ) ) = 𝐺 ) |
| 103 |
71 86 102
|
3syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) ) → ( 𝐺 ↾ ( 1 ... ( 𝑁 + 1 ) ) ) = 𝐺 ) |
| 104 |
95 101 103
|
3eqtrrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) ) → 𝐺 = ( 𝐹 ∪ 𝐻 ) ) |
| 105 |
77 85 104
|
3jca |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) ) → ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ) |
| 106 |
70 105
|
impbida |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = ( 𝐹 ∪ 𝐻 ) ) ↔ ( 𝐺 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ 𝐴 ∧ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = 𝐵 ∧ 𝐹 = ( 𝐺 ↾ ( 1 ... 𝑁 ) ) ) ) ) |