| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bren |
⊢ ( ( 𝐴 × 𝐴 ) ≈ 𝐴 ↔ ∃ 𝑓 𝑓 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ) |
| 2 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑏 𝑏 ∈ 𝐴 ) |
| 3 |
|
exdistrv |
⊢ ( ∃ 𝑓 ∃ 𝑏 ( 𝑓 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ↔ ( ∃ 𝑓 𝑓 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ∧ ∃ 𝑏 𝑏 ∈ 𝐴 ) ) |
| 4 |
|
omex |
⊢ ω ∈ V |
| 5 |
|
simpl |
⊢ ( ( 𝑓 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → 𝑓 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ) |
| 6 |
|
f1ofo |
⊢ ( 𝑓 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 → 𝑓 : ( 𝐴 × 𝐴 ) –onto→ 𝐴 ) |
| 7 |
|
forn |
⊢ ( 𝑓 : ( 𝐴 × 𝐴 ) –onto→ 𝐴 → ran 𝑓 = 𝐴 ) |
| 8 |
5 6 7
|
3syl |
⊢ ( ( 𝑓 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ran 𝑓 = 𝐴 ) |
| 9 |
|
vex |
⊢ 𝑓 ∈ V |
| 10 |
9
|
rnex |
⊢ ran 𝑓 ∈ V |
| 11 |
8 10
|
eqeltrrdi |
⊢ ( ( 𝑓 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → 𝐴 ∈ V ) |
| 12 |
|
xpexg |
⊢ ( ( ω ∈ V ∧ 𝐴 ∈ V ) → ( ω × 𝐴 ) ∈ V ) |
| 13 |
4 11 12
|
sylancr |
⊢ ( ( 𝑓 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( ω × 𝐴 ) ∈ V ) |
| 14 |
|
simpr |
⊢ ( ( 𝑓 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → 𝑏 ∈ 𝐴 ) |
| 15 |
|
eqid |
⊢ seqω ( ( 𝑘 ∈ V , 𝑔 ∈ V ↦ ( 𝑦 ∈ ( 𝐴 ↑m suc 𝑘 ) ↦ ( ( 𝑔 ‘ ( 𝑦 ↾ 𝑘 ) ) 𝑓 ( 𝑦 ‘ 𝑘 ) ) ) ) , { 〈 ∅ , 𝑏 〉 } ) = seqω ( ( 𝑘 ∈ V , 𝑔 ∈ V ↦ ( 𝑦 ∈ ( 𝐴 ↑m suc 𝑘 ) ↦ ( ( 𝑔 ‘ ( 𝑦 ↾ 𝑘 ) ) 𝑓 ( 𝑦 ‘ 𝑘 ) ) ) ) , { 〈 ∅ , 𝑏 〉 } ) |
| 16 |
|
eqid |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ↦ 〈 dom 𝑥 , ( ( seqω ( ( 𝑘 ∈ V , 𝑔 ∈ V ↦ ( 𝑦 ∈ ( 𝐴 ↑m suc 𝑘 ) ↦ ( ( 𝑔 ‘ ( 𝑦 ↾ 𝑘 ) ) 𝑓 ( 𝑦 ‘ 𝑘 ) ) ) ) , { 〈 ∅ , 𝑏 〉 } ) ‘ dom 𝑥 ) ‘ 𝑥 ) 〉 ) = ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ↦ 〈 dom 𝑥 , ( ( seqω ( ( 𝑘 ∈ V , 𝑔 ∈ V ↦ ( 𝑦 ∈ ( 𝐴 ↑m suc 𝑘 ) ↦ ( ( 𝑔 ‘ ( 𝑦 ↾ 𝑘 ) ) 𝑓 ( 𝑦 ‘ 𝑘 ) ) ) ) , { 〈 ∅ , 𝑏 〉 } ) ‘ dom 𝑥 ) ‘ 𝑥 ) 〉 ) |
| 17 |
11 14 5 15 16
|
fseqenlem2 |
⊢ ( ( 𝑓 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ↦ 〈 dom 𝑥 , ( ( seqω ( ( 𝑘 ∈ V , 𝑔 ∈ V ↦ ( 𝑦 ∈ ( 𝐴 ↑m suc 𝑘 ) ↦ ( ( 𝑔 ‘ ( 𝑦 ↾ 𝑘 ) ) 𝑓 ( 𝑦 ‘ 𝑘 ) ) ) ) , { 〈 ∅ , 𝑏 〉 } ) ‘ dom 𝑥 ) ‘ 𝑥 ) 〉 ) : ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) –1-1→ ( ω × 𝐴 ) ) |
| 18 |
|
f1domg |
⊢ ( ( ω × 𝐴 ) ∈ V → ( ( 𝑥 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ↦ 〈 dom 𝑥 , ( ( seqω ( ( 𝑘 ∈ V , 𝑔 ∈ V ↦ ( 𝑦 ∈ ( 𝐴 ↑m suc 𝑘 ) ↦ ( ( 𝑔 ‘ ( 𝑦 ↾ 𝑘 ) ) 𝑓 ( 𝑦 ‘ 𝑘 ) ) ) ) , { 〈 ∅ , 𝑏 〉 } ) ‘ dom 𝑥 ) ‘ 𝑥 ) 〉 ) : ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) –1-1→ ( ω × 𝐴 ) → ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ≼ ( ω × 𝐴 ) ) ) |
| 19 |
13 17 18
|
sylc |
⊢ ( ( 𝑓 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ≼ ( ω × 𝐴 ) ) |
| 20 |
|
fseqdom |
⊢ ( 𝐴 ∈ V → ( ω × 𝐴 ) ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
| 21 |
11 20
|
syl |
⊢ ( ( 𝑓 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( ω × 𝐴 ) ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
| 22 |
|
sbth |
⊢ ( ( ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ≼ ( ω × 𝐴 ) ∧ ( ω × 𝐴 ) ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) → ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ≈ ( ω × 𝐴 ) ) |
| 23 |
19 21 22
|
syl2anc |
⊢ ( ( 𝑓 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ≈ ( ω × 𝐴 ) ) |
| 24 |
23
|
exlimivv |
⊢ ( ∃ 𝑓 ∃ 𝑏 ( 𝑓 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ≈ ( ω × 𝐴 ) ) |
| 25 |
3 24
|
sylbir |
⊢ ( ( ∃ 𝑓 𝑓 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ∧ ∃ 𝑏 𝑏 ∈ 𝐴 ) → ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ≈ ( ω × 𝐴 ) ) |
| 26 |
1 2 25
|
syl2anb |
⊢ ( ( ( 𝐴 × 𝐴 ) ≈ 𝐴 ∧ 𝐴 ≠ ∅ ) → ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ≈ ( ω × 𝐴 ) ) |