| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fseqenlem.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
fseqenlem.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
| 3 |
|
fseqenlem.f |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ) |
| 4 |
|
fseqenlem.g |
⊢ 𝐺 = seqω ( ( 𝑛 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) ) , { 〈 ∅ , 𝐵 〉 } ) |
| 5 |
|
fveq2 |
⊢ ( 𝑦 = 𝐶 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝐶 ) ) |
| 6 |
|
f1eq1 |
⊢ ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝐶 ) → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ) |
| 7 |
5 6
|
syl |
⊢ ( 𝑦 = 𝐶 → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ) |
| 8 |
|
oveq2 |
⊢ ( 𝑦 = 𝐶 → ( 𝐴 ↑m 𝑦 ) = ( 𝐴 ↑m 𝐶 ) ) |
| 9 |
|
f1eq2 |
⊢ ( ( 𝐴 ↑m 𝑦 ) = ( 𝐴 ↑m 𝐶 ) → ( ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝐶 ) –1-1→ 𝐴 ) ) |
| 10 |
8 9
|
syl |
⊢ ( 𝑦 = 𝐶 → ( ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝐶 ) –1-1→ 𝐴 ) ) |
| 11 |
7 10
|
bitrd |
⊢ ( 𝑦 = 𝐶 → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝐶 ) –1-1→ 𝐴 ) ) |
| 12 |
11
|
imbi2d |
⊢ ( 𝑦 = 𝐶 → ( ( 𝜑 → ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ↔ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝐶 ) –1-1→ 𝐴 ) ) ) |
| 13 |
|
fveq2 |
⊢ ( 𝑦 = ∅ → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ ∅ ) ) |
| 14 |
|
snex |
⊢ { 〈 ∅ , 𝐵 〉 } ∈ V |
| 15 |
4
|
seqom0g |
⊢ ( { 〈 ∅ , 𝐵 〉 } ∈ V → ( 𝐺 ‘ ∅ ) = { 〈 ∅ , 𝐵 〉 } ) |
| 16 |
14 15
|
ax-mp |
⊢ ( 𝐺 ‘ ∅ ) = { 〈 ∅ , 𝐵 〉 } |
| 17 |
13 16
|
eqtrdi |
⊢ ( 𝑦 = ∅ → ( 𝐺 ‘ 𝑦 ) = { 〈 ∅ , 𝐵 〉 } ) |
| 18 |
|
f1eq1 |
⊢ ( ( 𝐺 ‘ 𝑦 ) = { 〈 ∅ , 𝐵 〉 } → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ) |
| 19 |
17 18
|
syl |
⊢ ( 𝑦 = ∅ → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ) |
| 20 |
|
oveq2 |
⊢ ( 𝑦 = ∅ → ( 𝐴 ↑m 𝑦 ) = ( 𝐴 ↑m ∅ ) ) |
| 21 |
|
f1eq2 |
⊢ ( ( 𝐴 ↑m 𝑦 ) = ( 𝐴 ↑m ∅ ) → ( { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m ∅ ) –1-1→ 𝐴 ) ) |
| 22 |
20 21
|
syl |
⊢ ( 𝑦 = ∅ → ( { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m ∅ ) –1-1→ 𝐴 ) ) |
| 23 |
19 22
|
bitrd |
⊢ ( 𝑦 = ∅ → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m ∅ ) –1-1→ 𝐴 ) ) |
| 24 |
|
fveq2 |
⊢ ( 𝑦 = 𝑚 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑚 ) ) |
| 25 |
|
f1eq1 |
⊢ ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑚 ) → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ) |
| 26 |
24 25
|
syl |
⊢ ( 𝑦 = 𝑚 → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ) |
| 27 |
|
oveq2 |
⊢ ( 𝑦 = 𝑚 → ( 𝐴 ↑m 𝑦 ) = ( 𝐴 ↑m 𝑚 ) ) |
| 28 |
|
f1eq2 |
⊢ ( ( 𝐴 ↑m 𝑦 ) = ( 𝐴 ↑m 𝑚 ) → ( ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) |
| 29 |
27 28
|
syl |
⊢ ( 𝑦 = 𝑚 → ( ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) |
| 30 |
26 29
|
bitrd |
⊢ ( 𝑦 = 𝑚 → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) |
| 31 |
|
fveq2 |
⊢ ( 𝑦 = suc 𝑚 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ suc 𝑚 ) ) |
| 32 |
|
f1eq1 |
⊢ ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ suc 𝑚 ) → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ) |
| 33 |
31 32
|
syl |
⊢ ( 𝑦 = suc 𝑚 → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ) |
| 34 |
|
oveq2 |
⊢ ( 𝑦 = suc 𝑚 → ( 𝐴 ↑m 𝑦 ) = ( 𝐴 ↑m suc 𝑚 ) ) |
| 35 |
|
f1eq2 |
⊢ ( ( 𝐴 ↑m 𝑦 ) = ( 𝐴 ↑m suc 𝑚 ) → ( ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m suc 𝑚 ) –1-1→ 𝐴 ) ) |
| 36 |
34 35
|
syl |
⊢ ( 𝑦 = suc 𝑚 → ( ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m suc 𝑚 ) –1-1→ 𝐴 ) ) |
| 37 |
33 36
|
bitrd |
⊢ ( 𝑦 = suc 𝑚 → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m suc 𝑚 ) –1-1→ 𝐴 ) ) |
| 38 |
|
0ex |
⊢ ∅ ∈ V |
| 39 |
|
f1osng |
⊢ ( ( ∅ ∈ V ∧ 𝐵 ∈ 𝐴 ) → { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1-onto→ { 𝐵 } ) |
| 40 |
38 2 39
|
sylancr |
⊢ ( 𝜑 → { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1-onto→ { 𝐵 } ) |
| 41 |
|
f1of1 |
⊢ ( { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1-onto→ { 𝐵 } → { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1→ { 𝐵 } ) |
| 42 |
40 41
|
syl |
⊢ ( 𝜑 → { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1→ { 𝐵 } ) |
| 43 |
2
|
snssd |
⊢ ( 𝜑 → { 𝐵 } ⊆ 𝐴 ) |
| 44 |
|
f1ss |
⊢ ( ( { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1→ { 𝐵 } ∧ { 𝐵 } ⊆ 𝐴 ) → { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1→ 𝐴 ) |
| 45 |
42 43 44
|
syl2anc |
⊢ ( 𝜑 → { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1→ 𝐴 ) |
| 46 |
|
map0e |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ↑m ∅ ) = 1o ) |
| 47 |
1 46
|
syl |
⊢ ( 𝜑 → ( 𝐴 ↑m ∅ ) = 1o ) |
| 48 |
|
df1o2 |
⊢ 1o = { ∅ } |
| 49 |
47 48
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐴 ↑m ∅ ) = { ∅ } ) |
| 50 |
|
f1eq2 |
⊢ ( ( 𝐴 ↑m ∅ ) = { ∅ } → ( { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m ∅ ) –1-1→ 𝐴 ↔ { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1→ 𝐴 ) ) |
| 51 |
49 50
|
syl |
⊢ ( 𝜑 → ( { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m ∅ ) –1-1→ 𝐴 ↔ { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1→ 𝐴 ) ) |
| 52 |
45 51
|
mpbird |
⊢ ( 𝜑 → { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m ∅ ) –1-1→ 𝐴 ) |
| 53 |
4
|
seqomsuc |
⊢ ( 𝑚 ∈ ω → ( 𝐺 ‘ suc 𝑚 ) = ( 𝑚 ( 𝑛 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) ) ( 𝐺 ‘ 𝑚 ) ) ) |
| 54 |
53
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) → ( 𝐺 ‘ suc 𝑚 ) = ( 𝑚 ( 𝑛 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) ) ( 𝐺 ‘ 𝑚 ) ) ) |
| 55 |
|
vex |
⊢ 𝑚 ∈ V |
| 56 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑚 ) ∈ V |
| 57 |
|
reseq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ↾ 𝑎 ) = ( 𝑧 ↾ 𝑎 ) ) |
| 58 |
57
|
fveq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) = ( 𝑏 ‘ ( 𝑧 ↾ 𝑎 ) ) ) |
| 59 |
|
fveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ‘ 𝑎 ) = ( 𝑧 ‘ 𝑎 ) ) |
| 60 |
58 59
|
oveq12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) 𝐹 ( 𝑥 ‘ 𝑎 ) ) = ( ( 𝑏 ‘ ( 𝑧 ↾ 𝑎 ) ) 𝐹 ( 𝑧 ‘ 𝑎 ) ) ) |
| 61 |
60
|
cbvmptv |
⊢ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑎 ) ↦ ( ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) 𝐹 ( 𝑥 ‘ 𝑎 ) ) ) = ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑎 ) ↦ ( ( 𝑏 ‘ ( 𝑧 ↾ 𝑎 ) ) 𝐹 ( 𝑧 ‘ 𝑎 ) ) ) |
| 62 |
|
suceq |
⊢ ( 𝑎 = 𝑚 → suc 𝑎 = suc 𝑚 ) |
| 63 |
62
|
adantr |
⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → suc 𝑎 = suc 𝑚 ) |
| 64 |
63
|
oveq2d |
⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → ( 𝐴 ↑m suc 𝑎 ) = ( 𝐴 ↑m suc 𝑚 ) ) |
| 65 |
|
simpr |
⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → 𝑏 = ( 𝐺 ‘ 𝑚 ) ) |
| 66 |
|
reseq2 |
⊢ ( 𝑎 = 𝑚 → ( 𝑧 ↾ 𝑎 ) = ( 𝑧 ↾ 𝑚 ) ) |
| 67 |
66
|
adantr |
⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → ( 𝑧 ↾ 𝑎 ) = ( 𝑧 ↾ 𝑚 ) ) |
| 68 |
65 67
|
fveq12d |
⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → ( 𝑏 ‘ ( 𝑧 ↾ 𝑎 ) ) = ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) ) |
| 69 |
|
simpl |
⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → 𝑎 = 𝑚 ) |
| 70 |
69
|
fveq2d |
⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → ( 𝑧 ‘ 𝑎 ) = ( 𝑧 ‘ 𝑚 ) ) |
| 71 |
68 70
|
oveq12d |
⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → ( ( 𝑏 ‘ ( 𝑧 ↾ 𝑎 ) ) 𝐹 ( 𝑧 ‘ 𝑎 ) ) = ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) |
| 72 |
64 71
|
mpteq12dv |
⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑎 ) ↦ ( ( 𝑏 ‘ ( 𝑧 ↾ 𝑎 ) ) 𝐹 ( 𝑧 ‘ 𝑎 ) ) ) = ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ) |
| 73 |
61 72
|
eqtrid |
⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑎 ) ↦ ( ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) 𝐹 ( 𝑥 ‘ 𝑎 ) ) ) = ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ) |
| 74 |
|
nfcv |
⊢ Ⅎ 𝑎 ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) |
| 75 |
|
nfcv |
⊢ Ⅎ 𝑏 ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) |
| 76 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑎 ) ↦ ( ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) 𝐹 ( 𝑥 ‘ 𝑎 ) ) ) |
| 77 |
|
nfcv |
⊢ Ⅎ 𝑓 ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑎 ) ↦ ( ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) 𝐹 ( 𝑥 ‘ 𝑎 ) ) ) |
| 78 |
|
suceq |
⊢ ( 𝑛 = 𝑎 → suc 𝑛 = suc 𝑎 ) |
| 79 |
78
|
adantr |
⊢ ( ( 𝑛 = 𝑎 ∧ 𝑓 = 𝑏 ) → suc 𝑛 = suc 𝑎 ) |
| 80 |
79
|
oveq2d |
⊢ ( ( 𝑛 = 𝑎 ∧ 𝑓 = 𝑏 ) → ( 𝐴 ↑m suc 𝑛 ) = ( 𝐴 ↑m suc 𝑎 ) ) |
| 81 |
|
simpr |
⊢ ( ( 𝑛 = 𝑎 ∧ 𝑓 = 𝑏 ) → 𝑓 = 𝑏 ) |
| 82 |
|
reseq2 |
⊢ ( 𝑛 = 𝑎 → ( 𝑥 ↾ 𝑛 ) = ( 𝑥 ↾ 𝑎 ) ) |
| 83 |
82
|
adantr |
⊢ ( ( 𝑛 = 𝑎 ∧ 𝑓 = 𝑏 ) → ( 𝑥 ↾ 𝑛 ) = ( 𝑥 ↾ 𝑎 ) ) |
| 84 |
81 83
|
fveq12d |
⊢ ( ( 𝑛 = 𝑎 ∧ 𝑓 = 𝑏 ) → ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) = ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) ) |
| 85 |
|
simpl |
⊢ ( ( 𝑛 = 𝑎 ∧ 𝑓 = 𝑏 ) → 𝑛 = 𝑎 ) |
| 86 |
85
|
fveq2d |
⊢ ( ( 𝑛 = 𝑎 ∧ 𝑓 = 𝑏 ) → ( 𝑥 ‘ 𝑛 ) = ( 𝑥 ‘ 𝑎 ) ) |
| 87 |
84 86
|
oveq12d |
⊢ ( ( 𝑛 = 𝑎 ∧ 𝑓 = 𝑏 ) → ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) = ( ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) 𝐹 ( 𝑥 ‘ 𝑎 ) ) ) |
| 88 |
80 87
|
mpteq12dv |
⊢ ( ( 𝑛 = 𝑎 ∧ 𝑓 = 𝑏 ) → ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) = ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑎 ) ↦ ( ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) 𝐹 ( 𝑥 ‘ 𝑎 ) ) ) ) |
| 89 |
74 75 76 77 88
|
cbvmpo |
⊢ ( 𝑛 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) ) = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑎 ) ↦ ( ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) 𝐹 ( 𝑥 ‘ 𝑎 ) ) ) ) |
| 90 |
|
ovex |
⊢ ( 𝐴 ↑m suc 𝑚 ) ∈ V |
| 91 |
90
|
mptex |
⊢ ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ∈ V |
| 92 |
73 89 91
|
ovmpoa |
⊢ ( ( 𝑚 ∈ V ∧ ( 𝐺 ‘ 𝑚 ) ∈ V ) → ( 𝑚 ( 𝑛 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) ) ( 𝐺 ‘ 𝑚 ) ) = ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ) |
| 93 |
55 56 92
|
mp2an |
⊢ ( 𝑚 ( 𝑛 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) ) ( 𝐺 ‘ 𝑚 ) ) = ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) |
| 94 |
54 93
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) → ( 𝐺 ‘ suc 𝑚 ) = ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ) |
| 95 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → 𝐹 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ) |
| 96 |
|
f1of |
⊢ ( 𝐹 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 → 𝐹 : ( 𝐴 × 𝐴 ) ⟶ 𝐴 ) |
| 97 |
95 96
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → 𝐹 : ( 𝐴 × 𝐴 ) ⟶ 𝐴 ) |
| 98 |
|
f1f |
⊢ ( ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 → ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) ⟶ 𝐴 ) |
| 99 |
98
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) → ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) ⟶ 𝐴 ) |
| 100 |
99
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) ⟶ 𝐴 ) |
| 101 |
|
elmapi |
⊢ ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) → 𝑧 : suc 𝑚 ⟶ 𝐴 ) |
| 102 |
101
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → 𝑧 : suc 𝑚 ⟶ 𝐴 ) |
| 103 |
|
sssucid |
⊢ 𝑚 ⊆ suc 𝑚 |
| 104 |
|
fssres |
⊢ ( ( 𝑧 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ⊆ suc 𝑚 ) → ( 𝑧 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) |
| 105 |
102 103 104
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → ( 𝑧 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) |
| 106 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → 𝐴 ∈ 𝑉 ) |
| 107 |
|
elmapg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑚 ∈ V ) → ( ( 𝑧 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ↔ ( 𝑧 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) ) |
| 108 |
106 55 107
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → ( ( 𝑧 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ↔ ( 𝑧 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) ) |
| 109 |
105 108
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → ( 𝑧 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ) |
| 110 |
100 109
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) ∈ 𝐴 ) |
| 111 |
55
|
sucid |
⊢ 𝑚 ∈ suc 𝑚 |
| 112 |
|
ffvelcdm |
⊢ ( ( 𝑧 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ suc 𝑚 ) → ( 𝑧 ‘ 𝑚 ) ∈ 𝐴 ) |
| 113 |
102 111 112
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → ( 𝑧 ‘ 𝑚 ) ∈ 𝐴 ) |
| 114 |
97 110 113
|
fovcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ∈ 𝐴 ) |
| 115 |
94 114
|
fmpt3d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) → ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m suc 𝑚 ) ⟶ 𝐴 ) |
| 116 |
|
elmapi |
⊢ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) → 𝑎 : suc 𝑚 ⟶ 𝐴 ) |
| 117 |
116
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 𝑎 : suc 𝑚 ⟶ 𝐴 ) |
| 118 |
117
|
ffnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 𝑎 Fn suc 𝑚 ) |
| 119 |
|
elmapi |
⊢ ( 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) → 𝑏 : suc 𝑚 ⟶ 𝐴 ) |
| 120 |
119
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 𝑏 : suc 𝑚 ⟶ 𝐴 ) |
| 121 |
120
|
ffnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 𝑏 Fn suc 𝑚 ) |
| 122 |
103
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 𝑚 ⊆ suc 𝑚 ) |
| 123 |
|
fvreseq |
⊢ ( ( ( 𝑎 Fn suc 𝑚 ∧ 𝑏 Fn suc 𝑚 ) ∧ 𝑚 ⊆ suc 𝑚 ) → ( ( 𝑎 ↾ 𝑚 ) = ( 𝑏 ↾ 𝑚 ) ↔ ∀ 𝑥 ∈ 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) |
| 124 |
118 121 122 123
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝑎 ↾ 𝑚 ) = ( 𝑏 ↾ 𝑚 ) ↔ ∀ 𝑥 ∈ 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) |
| 125 |
|
fveq2 |
⊢ ( 𝑥 = 𝑚 → ( 𝑎 ‘ 𝑥 ) = ( 𝑎 ‘ 𝑚 ) ) |
| 126 |
|
fveq2 |
⊢ ( 𝑥 = 𝑚 → ( 𝑏 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑚 ) ) |
| 127 |
125 126
|
eqeq12d |
⊢ ( 𝑥 = 𝑚 → ( ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ↔ ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ) ) |
| 128 |
55 127
|
ralsn |
⊢ ( ∀ 𝑥 ∈ { 𝑚 } ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ↔ ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ) |
| 129 |
128
|
bicomi |
⊢ ( ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ↔ ∀ 𝑥 ∈ { 𝑚 } ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) |
| 130 |
129
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ↔ ∀ 𝑥 ∈ { 𝑚 } ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) |
| 131 |
124 130
|
anbi12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( ( 𝑎 ↾ 𝑚 ) = ( 𝑏 ↾ 𝑚 ) ∧ ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ) ↔ ( ∀ 𝑥 ∈ 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ∧ ∀ 𝑥 ∈ { 𝑚 } ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) ) |
| 132 |
94
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝐺 ‘ suc 𝑚 ) = ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ) |
| 133 |
132
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑎 ) = ( ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ‘ 𝑎 ) ) |
| 134 |
|
reseq1 |
⊢ ( 𝑧 = 𝑎 → ( 𝑧 ↾ 𝑚 ) = ( 𝑎 ↾ 𝑚 ) ) |
| 135 |
134
|
fveq2d |
⊢ ( 𝑧 = 𝑎 → ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) = ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) ) |
| 136 |
|
fveq1 |
⊢ ( 𝑧 = 𝑎 → ( 𝑧 ‘ 𝑚 ) = ( 𝑎 ‘ 𝑚 ) ) |
| 137 |
135 136
|
oveq12d |
⊢ ( 𝑧 = 𝑎 → ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) = ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) 𝐹 ( 𝑎 ‘ 𝑚 ) ) ) |
| 138 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) = ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) |
| 139 |
|
ovex |
⊢ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) 𝐹 ( 𝑎 ‘ 𝑚 ) ) ∈ V |
| 140 |
137 138 139
|
fvmpt |
⊢ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) → ( ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ‘ 𝑎 ) = ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) 𝐹 ( 𝑎 ‘ 𝑚 ) ) ) |
| 141 |
140
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ‘ 𝑎 ) = ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) 𝐹 ( 𝑎 ‘ 𝑚 ) ) ) |
| 142 |
133 141
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑎 ) = ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) 𝐹 ( 𝑎 ‘ 𝑚 ) ) ) |
| 143 |
|
df-ov |
⊢ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) 𝐹 ( 𝑎 ‘ 𝑚 ) ) = ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 ) |
| 144 |
142 143
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑎 ) = ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 ) ) |
| 145 |
132
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ‘ 𝑏 ) ) |
| 146 |
|
reseq1 |
⊢ ( 𝑧 = 𝑏 → ( 𝑧 ↾ 𝑚 ) = ( 𝑏 ↾ 𝑚 ) ) |
| 147 |
146
|
fveq2d |
⊢ ( 𝑧 = 𝑏 → ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) = ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) ) |
| 148 |
|
fveq1 |
⊢ ( 𝑧 = 𝑏 → ( 𝑧 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ) |
| 149 |
147 148
|
oveq12d |
⊢ ( 𝑧 = 𝑏 → ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) = ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) 𝐹 ( 𝑏 ‘ 𝑚 ) ) ) |
| 150 |
|
ovex |
⊢ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) 𝐹 ( 𝑏 ‘ 𝑚 ) ) ∈ V |
| 151 |
149 138 150
|
fvmpt |
⊢ ( 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) → ( ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ‘ 𝑏 ) = ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) 𝐹 ( 𝑏 ‘ 𝑚 ) ) ) |
| 152 |
151
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ‘ 𝑏 ) = ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) 𝐹 ( 𝑏 ‘ 𝑚 ) ) ) |
| 153 |
145 152
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑏 ) = ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) 𝐹 ( 𝑏 ‘ 𝑚 ) ) ) |
| 154 |
|
df-ov |
⊢ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) 𝐹 ( 𝑏 ‘ 𝑚 ) ) = ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ) |
| 155 |
153 154
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑏 ) = ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ) ) |
| 156 |
144 155
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑎 ) = ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑏 ) ↔ ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 ) = ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ) ) ) |
| 157 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 𝐹 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ) |
| 158 |
|
f1of1 |
⊢ ( 𝐹 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 → 𝐹 : ( 𝐴 × 𝐴 ) –1-1→ 𝐴 ) |
| 159 |
157 158
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 𝐹 : ( 𝐴 × 𝐴 ) –1-1→ 𝐴 ) |
| 160 |
99
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) ⟶ 𝐴 ) |
| 161 |
|
fssres |
⊢ ( ( 𝑎 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ⊆ suc 𝑚 ) → ( 𝑎 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) |
| 162 |
117 103 161
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝑎 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) |
| 163 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 𝐴 ∈ 𝑉 ) |
| 164 |
|
elmapg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑚 ∈ V ) → ( ( 𝑎 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ↔ ( 𝑎 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) ) |
| 165 |
163 55 164
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝑎 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ↔ ( 𝑎 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) ) |
| 166 |
162 165
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝑎 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ) |
| 167 |
160 166
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) ∈ 𝐴 ) |
| 168 |
|
ffvelcdm |
⊢ ( ( 𝑎 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ suc 𝑚 ) → ( 𝑎 ‘ 𝑚 ) ∈ 𝐴 ) |
| 169 |
117 111 168
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝑎 ‘ 𝑚 ) ∈ 𝐴 ) |
| 170 |
167 169
|
opelxpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 ∈ ( 𝐴 × 𝐴 ) ) |
| 171 |
|
fssres |
⊢ ( ( 𝑏 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ⊆ suc 𝑚 ) → ( 𝑏 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) |
| 172 |
120 103 171
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝑏 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) |
| 173 |
|
elmapg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑚 ∈ V ) → ( ( 𝑏 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ↔ ( 𝑏 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) ) |
| 174 |
163 55 173
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝑏 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ↔ ( 𝑏 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) ) |
| 175 |
172 174
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝑏 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ) |
| 176 |
160 175
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) ∈ 𝐴 ) |
| 177 |
|
ffvelcdm |
⊢ ( ( 𝑏 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ suc 𝑚 ) → ( 𝑏 ‘ 𝑚 ) ∈ 𝐴 ) |
| 178 |
120 111 177
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝑏 ‘ 𝑚 ) ∈ 𝐴 ) |
| 179 |
176 178
|
opelxpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ∈ ( 𝐴 × 𝐴 ) ) |
| 180 |
|
f1fveq |
⊢ ( ( 𝐹 : ( 𝐴 × 𝐴 ) –1-1→ 𝐴 ∧ ( 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 ∈ ( 𝐴 × 𝐴 ) ∧ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ∈ ( 𝐴 × 𝐴 ) ) ) → ( ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 ) = ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ) ↔ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 = 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ) ) |
| 181 |
159 170 179 180
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 ) = ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ) ↔ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 = 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ) ) |
| 182 |
|
fvex |
⊢ ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) ∈ V |
| 183 |
|
fvex |
⊢ ( 𝑎 ‘ 𝑚 ) ∈ V |
| 184 |
182 183
|
opth |
⊢ ( 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 = 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ↔ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) = ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) ∧ ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ) ) |
| 185 |
181 184
|
bitrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 ) = ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ) ↔ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) = ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) ∧ ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ) ) ) |
| 186 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) |
| 187 |
|
f1fveq |
⊢ ( ( ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ∧ ( ( 𝑎 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ∧ ( 𝑏 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ) ) → ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) = ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) ↔ ( 𝑎 ↾ 𝑚 ) = ( 𝑏 ↾ 𝑚 ) ) ) |
| 188 |
186 166 175 187
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) = ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) ↔ ( 𝑎 ↾ 𝑚 ) = ( 𝑏 ↾ 𝑚 ) ) ) |
| 189 |
188
|
anbi1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) = ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) ∧ ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ) ↔ ( ( 𝑎 ↾ 𝑚 ) = ( 𝑏 ↾ 𝑚 ) ∧ ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ) ) ) |
| 190 |
156 185 189
|
3bitrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑎 ) = ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑏 ) ↔ ( ( 𝑎 ↾ 𝑚 ) = ( 𝑏 ↾ 𝑚 ) ∧ ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ) ) ) |
| 191 |
|
eqfnfv |
⊢ ( ( 𝑎 Fn suc 𝑚 ∧ 𝑏 Fn suc 𝑚 ) → ( 𝑎 = 𝑏 ↔ ∀ 𝑥 ∈ suc 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) |
| 192 |
118 121 191
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝑎 = 𝑏 ↔ ∀ 𝑥 ∈ suc 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) |
| 193 |
|
df-suc |
⊢ suc 𝑚 = ( 𝑚 ∪ { 𝑚 } ) |
| 194 |
193
|
raleqi |
⊢ ( ∀ 𝑥 ∈ suc 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑚 } ) ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) |
| 195 |
|
ralunb |
⊢ ( ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑚 } ) ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ↔ ( ∀ 𝑥 ∈ 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ∧ ∀ 𝑥 ∈ { 𝑚 } ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) |
| 196 |
194 195
|
bitri |
⊢ ( ∀ 𝑥 ∈ suc 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ↔ ( ∀ 𝑥 ∈ 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ∧ ∀ 𝑥 ∈ { 𝑚 } ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) |
| 197 |
192 196
|
bitrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝑎 = 𝑏 ↔ ( ∀ 𝑥 ∈ 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ∧ ∀ 𝑥 ∈ { 𝑚 } ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) ) |
| 198 |
131 190 197
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑎 ) = ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑏 ) ↔ 𝑎 = 𝑏 ) ) |
| 199 |
198
|
biimpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑎 ) = ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
| 200 |
199
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) → ∀ 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∀ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ( ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑎 ) = ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
| 201 |
|
dff13 |
⊢ ( ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m suc 𝑚 ) –1-1→ 𝐴 ↔ ( ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m suc 𝑚 ) ⟶ 𝐴 ∧ ∀ 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∀ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ( ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑎 ) = ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
| 202 |
115 200 201
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) → ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m suc 𝑚 ) –1-1→ 𝐴 ) |
| 203 |
202
|
expr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ω ) → ( ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 → ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m suc 𝑚 ) –1-1→ 𝐴 ) ) |
| 204 |
203
|
expcom |
⊢ ( 𝑚 ∈ ω → ( 𝜑 → ( ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 → ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m suc 𝑚 ) –1-1→ 𝐴 ) ) ) |
| 205 |
23 30 37 52 204
|
finds2 |
⊢ ( 𝑦 ∈ ω → ( 𝜑 → ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ) |
| 206 |
12 205
|
vtoclga |
⊢ ( 𝐶 ∈ ω → ( 𝜑 → ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝐶 ) –1-1→ 𝐴 ) ) |
| 207 |
206
|
impcom |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ω ) → ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝐶 ) –1-1→ 𝐴 ) |