Step |
Hyp |
Ref |
Expression |
1 |
|
fseqenlem.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
fseqenlem.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
3 |
|
fseqenlem.f |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ) |
4 |
|
fseqenlem.g |
⊢ 𝐺 = seqω ( ( 𝑛 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) ) , { 〈 ∅ , 𝐵 〉 } ) |
5 |
|
fveq2 |
⊢ ( 𝑦 = 𝐶 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝐶 ) ) |
6 |
|
f1eq1 |
⊢ ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝐶 ) → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ) |
7 |
5 6
|
syl |
⊢ ( 𝑦 = 𝐶 → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ) |
8 |
|
oveq2 |
⊢ ( 𝑦 = 𝐶 → ( 𝐴 ↑m 𝑦 ) = ( 𝐴 ↑m 𝐶 ) ) |
9 |
|
f1eq2 |
⊢ ( ( 𝐴 ↑m 𝑦 ) = ( 𝐴 ↑m 𝐶 ) → ( ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝐶 ) –1-1→ 𝐴 ) ) |
10 |
8 9
|
syl |
⊢ ( 𝑦 = 𝐶 → ( ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝐶 ) –1-1→ 𝐴 ) ) |
11 |
7 10
|
bitrd |
⊢ ( 𝑦 = 𝐶 → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝐶 ) –1-1→ 𝐴 ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑦 = 𝐶 → ( ( 𝜑 → ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ↔ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝐶 ) –1-1→ 𝐴 ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑦 = ∅ → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ ∅ ) ) |
14 |
|
snex |
⊢ { 〈 ∅ , 𝐵 〉 } ∈ V |
15 |
4
|
seqom0g |
⊢ ( { 〈 ∅ , 𝐵 〉 } ∈ V → ( 𝐺 ‘ ∅ ) = { 〈 ∅ , 𝐵 〉 } ) |
16 |
14 15
|
ax-mp |
⊢ ( 𝐺 ‘ ∅ ) = { 〈 ∅ , 𝐵 〉 } |
17 |
13 16
|
eqtrdi |
⊢ ( 𝑦 = ∅ → ( 𝐺 ‘ 𝑦 ) = { 〈 ∅ , 𝐵 〉 } ) |
18 |
|
f1eq1 |
⊢ ( ( 𝐺 ‘ 𝑦 ) = { 〈 ∅ , 𝐵 〉 } → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ) |
19 |
17 18
|
syl |
⊢ ( 𝑦 = ∅ → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ) |
20 |
|
oveq2 |
⊢ ( 𝑦 = ∅ → ( 𝐴 ↑m 𝑦 ) = ( 𝐴 ↑m ∅ ) ) |
21 |
|
f1eq2 |
⊢ ( ( 𝐴 ↑m 𝑦 ) = ( 𝐴 ↑m ∅ ) → ( { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m ∅ ) –1-1→ 𝐴 ) ) |
22 |
20 21
|
syl |
⊢ ( 𝑦 = ∅ → ( { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m ∅ ) –1-1→ 𝐴 ) ) |
23 |
19 22
|
bitrd |
⊢ ( 𝑦 = ∅ → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m ∅ ) –1-1→ 𝐴 ) ) |
24 |
|
fveq2 |
⊢ ( 𝑦 = 𝑚 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑚 ) ) |
25 |
|
f1eq1 |
⊢ ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑚 ) → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ) |
26 |
24 25
|
syl |
⊢ ( 𝑦 = 𝑚 → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ) |
27 |
|
oveq2 |
⊢ ( 𝑦 = 𝑚 → ( 𝐴 ↑m 𝑦 ) = ( 𝐴 ↑m 𝑚 ) ) |
28 |
|
f1eq2 |
⊢ ( ( 𝐴 ↑m 𝑦 ) = ( 𝐴 ↑m 𝑚 ) → ( ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) |
29 |
27 28
|
syl |
⊢ ( 𝑦 = 𝑚 → ( ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) |
30 |
26 29
|
bitrd |
⊢ ( 𝑦 = 𝑚 → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) |
31 |
|
fveq2 |
⊢ ( 𝑦 = suc 𝑚 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ suc 𝑚 ) ) |
32 |
|
f1eq1 |
⊢ ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ suc 𝑚 ) → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ) |
33 |
31 32
|
syl |
⊢ ( 𝑦 = suc 𝑚 → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ) |
34 |
|
oveq2 |
⊢ ( 𝑦 = suc 𝑚 → ( 𝐴 ↑m 𝑦 ) = ( 𝐴 ↑m suc 𝑚 ) ) |
35 |
|
f1eq2 |
⊢ ( ( 𝐴 ↑m 𝑦 ) = ( 𝐴 ↑m suc 𝑚 ) → ( ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m suc 𝑚 ) –1-1→ 𝐴 ) ) |
36 |
34 35
|
syl |
⊢ ( 𝑦 = suc 𝑚 → ( ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m suc 𝑚 ) –1-1→ 𝐴 ) ) |
37 |
33 36
|
bitrd |
⊢ ( 𝑦 = suc 𝑚 → ( ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ↔ ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m suc 𝑚 ) –1-1→ 𝐴 ) ) |
38 |
|
0ex |
⊢ ∅ ∈ V |
39 |
|
f1osng |
⊢ ( ( ∅ ∈ V ∧ 𝐵 ∈ 𝐴 ) → { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1-onto→ { 𝐵 } ) |
40 |
38 2 39
|
sylancr |
⊢ ( 𝜑 → { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1-onto→ { 𝐵 } ) |
41 |
|
f1of1 |
⊢ ( { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1-onto→ { 𝐵 } → { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1→ { 𝐵 } ) |
42 |
40 41
|
syl |
⊢ ( 𝜑 → { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1→ { 𝐵 } ) |
43 |
2
|
snssd |
⊢ ( 𝜑 → { 𝐵 } ⊆ 𝐴 ) |
44 |
|
f1ss |
⊢ ( ( { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1→ { 𝐵 } ∧ { 𝐵 } ⊆ 𝐴 ) → { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1→ 𝐴 ) |
45 |
42 43 44
|
syl2anc |
⊢ ( 𝜑 → { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1→ 𝐴 ) |
46 |
|
map0e |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ↑m ∅ ) = 1o ) |
47 |
1 46
|
syl |
⊢ ( 𝜑 → ( 𝐴 ↑m ∅ ) = 1o ) |
48 |
|
df1o2 |
⊢ 1o = { ∅ } |
49 |
47 48
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐴 ↑m ∅ ) = { ∅ } ) |
50 |
|
f1eq2 |
⊢ ( ( 𝐴 ↑m ∅ ) = { ∅ } → ( { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m ∅ ) –1-1→ 𝐴 ↔ { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1→ 𝐴 ) ) |
51 |
49 50
|
syl |
⊢ ( 𝜑 → ( { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m ∅ ) –1-1→ 𝐴 ↔ { 〈 ∅ , 𝐵 〉 } : { ∅ } –1-1→ 𝐴 ) ) |
52 |
45 51
|
mpbird |
⊢ ( 𝜑 → { 〈 ∅ , 𝐵 〉 } : ( 𝐴 ↑m ∅ ) –1-1→ 𝐴 ) |
53 |
4
|
seqomsuc |
⊢ ( 𝑚 ∈ ω → ( 𝐺 ‘ suc 𝑚 ) = ( 𝑚 ( 𝑛 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) ) ( 𝐺 ‘ 𝑚 ) ) ) |
54 |
53
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) → ( 𝐺 ‘ suc 𝑚 ) = ( 𝑚 ( 𝑛 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) ) ( 𝐺 ‘ 𝑚 ) ) ) |
55 |
|
vex |
⊢ 𝑚 ∈ V |
56 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑚 ) ∈ V |
57 |
|
reseq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ↾ 𝑎 ) = ( 𝑧 ↾ 𝑎 ) ) |
58 |
57
|
fveq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) = ( 𝑏 ‘ ( 𝑧 ↾ 𝑎 ) ) ) |
59 |
|
fveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ‘ 𝑎 ) = ( 𝑧 ‘ 𝑎 ) ) |
60 |
58 59
|
oveq12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) 𝐹 ( 𝑥 ‘ 𝑎 ) ) = ( ( 𝑏 ‘ ( 𝑧 ↾ 𝑎 ) ) 𝐹 ( 𝑧 ‘ 𝑎 ) ) ) |
61 |
60
|
cbvmptv |
⊢ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑎 ) ↦ ( ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) 𝐹 ( 𝑥 ‘ 𝑎 ) ) ) = ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑎 ) ↦ ( ( 𝑏 ‘ ( 𝑧 ↾ 𝑎 ) ) 𝐹 ( 𝑧 ‘ 𝑎 ) ) ) |
62 |
|
suceq |
⊢ ( 𝑎 = 𝑚 → suc 𝑎 = suc 𝑚 ) |
63 |
62
|
adantr |
⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → suc 𝑎 = suc 𝑚 ) |
64 |
63
|
oveq2d |
⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → ( 𝐴 ↑m suc 𝑎 ) = ( 𝐴 ↑m suc 𝑚 ) ) |
65 |
|
simpr |
⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → 𝑏 = ( 𝐺 ‘ 𝑚 ) ) |
66 |
|
reseq2 |
⊢ ( 𝑎 = 𝑚 → ( 𝑧 ↾ 𝑎 ) = ( 𝑧 ↾ 𝑚 ) ) |
67 |
66
|
adantr |
⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → ( 𝑧 ↾ 𝑎 ) = ( 𝑧 ↾ 𝑚 ) ) |
68 |
65 67
|
fveq12d |
⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → ( 𝑏 ‘ ( 𝑧 ↾ 𝑎 ) ) = ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) ) |
69 |
|
simpl |
⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → 𝑎 = 𝑚 ) |
70 |
69
|
fveq2d |
⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → ( 𝑧 ‘ 𝑎 ) = ( 𝑧 ‘ 𝑚 ) ) |
71 |
68 70
|
oveq12d |
⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → ( ( 𝑏 ‘ ( 𝑧 ↾ 𝑎 ) ) 𝐹 ( 𝑧 ‘ 𝑎 ) ) = ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) |
72 |
64 71
|
mpteq12dv |
⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑎 ) ↦ ( ( 𝑏 ‘ ( 𝑧 ↾ 𝑎 ) ) 𝐹 ( 𝑧 ‘ 𝑎 ) ) ) = ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ) |
73 |
61 72
|
eqtrid |
⊢ ( ( 𝑎 = 𝑚 ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑎 ) ↦ ( ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) 𝐹 ( 𝑥 ‘ 𝑎 ) ) ) = ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ) |
74 |
|
nfcv |
⊢ Ⅎ 𝑎 ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) |
75 |
|
nfcv |
⊢ Ⅎ 𝑏 ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) |
76 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑎 ) ↦ ( ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) 𝐹 ( 𝑥 ‘ 𝑎 ) ) ) |
77 |
|
nfcv |
⊢ Ⅎ 𝑓 ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑎 ) ↦ ( ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) 𝐹 ( 𝑥 ‘ 𝑎 ) ) ) |
78 |
|
suceq |
⊢ ( 𝑛 = 𝑎 → suc 𝑛 = suc 𝑎 ) |
79 |
78
|
adantr |
⊢ ( ( 𝑛 = 𝑎 ∧ 𝑓 = 𝑏 ) → suc 𝑛 = suc 𝑎 ) |
80 |
79
|
oveq2d |
⊢ ( ( 𝑛 = 𝑎 ∧ 𝑓 = 𝑏 ) → ( 𝐴 ↑m suc 𝑛 ) = ( 𝐴 ↑m suc 𝑎 ) ) |
81 |
|
simpr |
⊢ ( ( 𝑛 = 𝑎 ∧ 𝑓 = 𝑏 ) → 𝑓 = 𝑏 ) |
82 |
|
reseq2 |
⊢ ( 𝑛 = 𝑎 → ( 𝑥 ↾ 𝑛 ) = ( 𝑥 ↾ 𝑎 ) ) |
83 |
82
|
adantr |
⊢ ( ( 𝑛 = 𝑎 ∧ 𝑓 = 𝑏 ) → ( 𝑥 ↾ 𝑛 ) = ( 𝑥 ↾ 𝑎 ) ) |
84 |
81 83
|
fveq12d |
⊢ ( ( 𝑛 = 𝑎 ∧ 𝑓 = 𝑏 ) → ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) = ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) ) |
85 |
|
simpl |
⊢ ( ( 𝑛 = 𝑎 ∧ 𝑓 = 𝑏 ) → 𝑛 = 𝑎 ) |
86 |
85
|
fveq2d |
⊢ ( ( 𝑛 = 𝑎 ∧ 𝑓 = 𝑏 ) → ( 𝑥 ‘ 𝑛 ) = ( 𝑥 ‘ 𝑎 ) ) |
87 |
84 86
|
oveq12d |
⊢ ( ( 𝑛 = 𝑎 ∧ 𝑓 = 𝑏 ) → ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) = ( ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) 𝐹 ( 𝑥 ‘ 𝑎 ) ) ) |
88 |
80 87
|
mpteq12dv |
⊢ ( ( 𝑛 = 𝑎 ∧ 𝑓 = 𝑏 ) → ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) = ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑎 ) ↦ ( ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) 𝐹 ( 𝑥 ‘ 𝑎 ) ) ) ) |
89 |
74 75 76 77 88
|
cbvmpo |
⊢ ( 𝑛 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) ) = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑎 ) ↦ ( ( 𝑏 ‘ ( 𝑥 ↾ 𝑎 ) ) 𝐹 ( 𝑥 ‘ 𝑎 ) ) ) ) |
90 |
|
ovex |
⊢ ( 𝐴 ↑m suc 𝑚 ) ∈ V |
91 |
90
|
mptex |
⊢ ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ∈ V |
92 |
73 89 91
|
ovmpoa |
⊢ ( ( 𝑚 ∈ V ∧ ( 𝐺 ‘ 𝑚 ) ∈ V ) → ( 𝑚 ( 𝑛 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) ) ( 𝐺 ‘ 𝑚 ) ) = ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ) |
93 |
55 56 92
|
mp2an |
⊢ ( 𝑚 ( 𝑛 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) ) ( 𝐺 ‘ 𝑚 ) ) = ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) |
94 |
54 93
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) → ( 𝐺 ‘ suc 𝑚 ) = ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ) |
95 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → 𝐹 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ) |
96 |
|
f1of |
⊢ ( 𝐹 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 → 𝐹 : ( 𝐴 × 𝐴 ) ⟶ 𝐴 ) |
97 |
95 96
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → 𝐹 : ( 𝐴 × 𝐴 ) ⟶ 𝐴 ) |
98 |
|
f1f |
⊢ ( ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 → ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) ⟶ 𝐴 ) |
99 |
98
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) → ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) ⟶ 𝐴 ) |
100 |
99
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) ⟶ 𝐴 ) |
101 |
|
elmapi |
⊢ ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) → 𝑧 : suc 𝑚 ⟶ 𝐴 ) |
102 |
101
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → 𝑧 : suc 𝑚 ⟶ 𝐴 ) |
103 |
|
sssucid |
⊢ 𝑚 ⊆ suc 𝑚 |
104 |
|
fssres |
⊢ ( ( 𝑧 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ⊆ suc 𝑚 ) → ( 𝑧 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) |
105 |
102 103 104
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → ( 𝑧 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) |
106 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → 𝐴 ∈ 𝑉 ) |
107 |
|
elmapg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑚 ∈ V ) → ( ( 𝑧 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ↔ ( 𝑧 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) ) |
108 |
106 55 107
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → ( ( 𝑧 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ↔ ( 𝑧 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) ) |
109 |
105 108
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → ( 𝑧 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ) |
110 |
100 109
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) ∈ 𝐴 ) |
111 |
55
|
sucid |
⊢ 𝑚 ∈ suc 𝑚 |
112 |
|
ffvelrn |
⊢ ( ( 𝑧 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ suc 𝑚 ) → ( 𝑧 ‘ 𝑚 ) ∈ 𝐴 ) |
113 |
102 111 112
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → ( 𝑧 ‘ 𝑚 ) ∈ 𝐴 ) |
114 |
97 110 113
|
fovrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ) → ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ∈ 𝐴 ) |
115 |
94 114
|
fmpt3d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) → ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m suc 𝑚 ) ⟶ 𝐴 ) |
116 |
|
elmapi |
⊢ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) → 𝑎 : suc 𝑚 ⟶ 𝐴 ) |
117 |
116
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 𝑎 : suc 𝑚 ⟶ 𝐴 ) |
118 |
117
|
ffnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 𝑎 Fn suc 𝑚 ) |
119 |
|
elmapi |
⊢ ( 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) → 𝑏 : suc 𝑚 ⟶ 𝐴 ) |
120 |
119
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 𝑏 : suc 𝑚 ⟶ 𝐴 ) |
121 |
120
|
ffnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 𝑏 Fn suc 𝑚 ) |
122 |
103
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 𝑚 ⊆ suc 𝑚 ) |
123 |
|
fvreseq |
⊢ ( ( ( 𝑎 Fn suc 𝑚 ∧ 𝑏 Fn suc 𝑚 ) ∧ 𝑚 ⊆ suc 𝑚 ) → ( ( 𝑎 ↾ 𝑚 ) = ( 𝑏 ↾ 𝑚 ) ↔ ∀ 𝑥 ∈ 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) |
124 |
118 121 122 123
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝑎 ↾ 𝑚 ) = ( 𝑏 ↾ 𝑚 ) ↔ ∀ 𝑥 ∈ 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) |
125 |
|
fveq2 |
⊢ ( 𝑥 = 𝑚 → ( 𝑎 ‘ 𝑥 ) = ( 𝑎 ‘ 𝑚 ) ) |
126 |
|
fveq2 |
⊢ ( 𝑥 = 𝑚 → ( 𝑏 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑚 ) ) |
127 |
125 126
|
eqeq12d |
⊢ ( 𝑥 = 𝑚 → ( ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ↔ ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ) ) |
128 |
55 127
|
ralsn |
⊢ ( ∀ 𝑥 ∈ { 𝑚 } ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ↔ ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ) |
129 |
128
|
bicomi |
⊢ ( ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ↔ ∀ 𝑥 ∈ { 𝑚 } ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) |
130 |
129
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ↔ ∀ 𝑥 ∈ { 𝑚 } ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) |
131 |
124 130
|
anbi12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( ( 𝑎 ↾ 𝑚 ) = ( 𝑏 ↾ 𝑚 ) ∧ ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ) ↔ ( ∀ 𝑥 ∈ 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ∧ ∀ 𝑥 ∈ { 𝑚 } ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) ) |
132 |
94
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝐺 ‘ suc 𝑚 ) = ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ) |
133 |
132
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑎 ) = ( ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ‘ 𝑎 ) ) |
134 |
|
reseq1 |
⊢ ( 𝑧 = 𝑎 → ( 𝑧 ↾ 𝑚 ) = ( 𝑎 ↾ 𝑚 ) ) |
135 |
134
|
fveq2d |
⊢ ( 𝑧 = 𝑎 → ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) = ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) ) |
136 |
|
fveq1 |
⊢ ( 𝑧 = 𝑎 → ( 𝑧 ‘ 𝑚 ) = ( 𝑎 ‘ 𝑚 ) ) |
137 |
135 136
|
oveq12d |
⊢ ( 𝑧 = 𝑎 → ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) = ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) 𝐹 ( 𝑎 ‘ 𝑚 ) ) ) |
138 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) = ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) |
139 |
|
ovex |
⊢ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) 𝐹 ( 𝑎 ‘ 𝑚 ) ) ∈ V |
140 |
137 138 139
|
fvmpt |
⊢ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) → ( ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ‘ 𝑎 ) = ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) 𝐹 ( 𝑎 ‘ 𝑚 ) ) ) |
141 |
140
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ‘ 𝑎 ) = ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) 𝐹 ( 𝑎 ‘ 𝑚 ) ) ) |
142 |
133 141
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑎 ) = ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) 𝐹 ( 𝑎 ‘ 𝑚 ) ) ) |
143 |
|
df-ov |
⊢ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) 𝐹 ( 𝑎 ‘ 𝑚 ) ) = ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 ) |
144 |
142 143
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑎 ) = ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 ) ) |
145 |
132
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑏 ) = ( ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ‘ 𝑏 ) ) |
146 |
|
reseq1 |
⊢ ( 𝑧 = 𝑏 → ( 𝑧 ↾ 𝑚 ) = ( 𝑏 ↾ 𝑚 ) ) |
147 |
146
|
fveq2d |
⊢ ( 𝑧 = 𝑏 → ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) = ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) ) |
148 |
|
fveq1 |
⊢ ( 𝑧 = 𝑏 → ( 𝑧 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ) |
149 |
147 148
|
oveq12d |
⊢ ( 𝑧 = 𝑏 → ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) = ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) 𝐹 ( 𝑏 ‘ 𝑚 ) ) ) |
150 |
|
ovex |
⊢ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) 𝐹 ( 𝑏 ‘ 𝑚 ) ) ∈ V |
151 |
149 138 150
|
fvmpt |
⊢ ( 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) → ( ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ‘ 𝑏 ) = ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) 𝐹 ( 𝑏 ‘ 𝑚 ) ) ) |
152 |
151
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝑧 ∈ ( 𝐴 ↑m suc 𝑚 ) ↦ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑧 ↾ 𝑚 ) ) 𝐹 ( 𝑧 ‘ 𝑚 ) ) ) ‘ 𝑏 ) = ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) 𝐹 ( 𝑏 ‘ 𝑚 ) ) ) |
153 |
145 152
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑏 ) = ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) 𝐹 ( 𝑏 ‘ 𝑚 ) ) ) |
154 |
|
df-ov |
⊢ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) 𝐹 ( 𝑏 ‘ 𝑚 ) ) = ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ) |
155 |
153 154
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑏 ) = ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ) ) |
156 |
144 155
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑎 ) = ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑏 ) ↔ ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 ) = ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ) ) ) |
157 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 𝐹 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ) |
158 |
|
f1of1 |
⊢ ( 𝐹 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 → 𝐹 : ( 𝐴 × 𝐴 ) –1-1→ 𝐴 ) |
159 |
157 158
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 𝐹 : ( 𝐴 × 𝐴 ) –1-1→ 𝐴 ) |
160 |
99
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) ⟶ 𝐴 ) |
161 |
|
fssres |
⊢ ( ( 𝑎 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ⊆ suc 𝑚 ) → ( 𝑎 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) |
162 |
117 103 161
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝑎 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) |
163 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 𝐴 ∈ 𝑉 ) |
164 |
|
elmapg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑚 ∈ V ) → ( ( 𝑎 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ↔ ( 𝑎 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) ) |
165 |
163 55 164
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝑎 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ↔ ( 𝑎 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) ) |
166 |
162 165
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝑎 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ) |
167 |
160 166
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) ∈ 𝐴 ) |
168 |
|
ffvelrn |
⊢ ( ( 𝑎 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ suc 𝑚 ) → ( 𝑎 ‘ 𝑚 ) ∈ 𝐴 ) |
169 |
117 111 168
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝑎 ‘ 𝑚 ) ∈ 𝐴 ) |
170 |
167 169
|
opelxpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 ∈ ( 𝐴 × 𝐴 ) ) |
171 |
|
fssres |
⊢ ( ( 𝑏 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ⊆ suc 𝑚 ) → ( 𝑏 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) |
172 |
120 103 171
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝑏 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) |
173 |
|
elmapg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑚 ∈ V ) → ( ( 𝑏 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ↔ ( 𝑏 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) ) |
174 |
163 55 173
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝑏 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ↔ ( 𝑏 ↾ 𝑚 ) : 𝑚 ⟶ 𝐴 ) ) |
175 |
172 174
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝑏 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ) |
176 |
160 175
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) ∈ 𝐴 ) |
177 |
|
ffvelrn |
⊢ ( ( 𝑏 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ suc 𝑚 ) → ( 𝑏 ‘ 𝑚 ) ∈ 𝐴 ) |
178 |
120 111 177
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝑏 ‘ 𝑚 ) ∈ 𝐴 ) |
179 |
176 178
|
opelxpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ∈ ( 𝐴 × 𝐴 ) ) |
180 |
|
f1fveq |
⊢ ( ( 𝐹 : ( 𝐴 × 𝐴 ) –1-1→ 𝐴 ∧ ( 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 ∈ ( 𝐴 × 𝐴 ) ∧ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ∈ ( 𝐴 × 𝐴 ) ) ) → ( ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 ) = ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ) ↔ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 = 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ) ) |
181 |
159 170 179 180
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 ) = ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ) ↔ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 = 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ) ) |
182 |
|
fvex |
⊢ ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) ∈ V |
183 |
|
fvex |
⊢ ( 𝑎 ‘ 𝑚 ) ∈ V |
184 |
182 183
|
opth |
⊢ ( 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 = 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ↔ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) = ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) ∧ ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ) ) |
185 |
181 184
|
bitrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) , ( 𝑎 ‘ 𝑚 ) 〉 ) = ( 𝐹 ‘ 〈 ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) , ( 𝑏 ‘ 𝑚 ) 〉 ) ↔ ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) = ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) ∧ ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ) ) ) |
186 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) |
187 |
|
f1fveq |
⊢ ( ( ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ∧ ( ( 𝑎 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ∧ ( 𝑏 ↾ 𝑚 ) ∈ ( 𝐴 ↑m 𝑚 ) ) ) → ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) = ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) ↔ ( 𝑎 ↾ 𝑚 ) = ( 𝑏 ↾ 𝑚 ) ) ) |
188 |
186 166 175 187
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) = ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) ↔ ( 𝑎 ↾ 𝑚 ) = ( 𝑏 ↾ 𝑚 ) ) ) |
189 |
188
|
anbi1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑎 ↾ 𝑚 ) ) = ( ( 𝐺 ‘ 𝑚 ) ‘ ( 𝑏 ↾ 𝑚 ) ) ∧ ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ) ↔ ( ( 𝑎 ↾ 𝑚 ) = ( 𝑏 ↾ 𝑚 ) ∧ ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ) ) ) |
190 |
156 185 189
|
3bitrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑎 ) = ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑏 ) ↔ ( ( 𝑎 ↾ 𝑚 ) = ( 𝑏 ↾ 𝑚 ) ∧ ( 𝑎 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑚 ) ) ) ) |
191 |
|
eqfnfv |
⊢ ( ( 𝑎 Fn suc 𝑚 ∧ 𝑏 Fn suc 𝑚 ) → ( 𝑎 = 𝑏 ↔ ∀ 𝑥 ∈ suc 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) |
192 |
118 121 191
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝑎 = 𝑏 ↔ ∀ 𝑥 ∈ suc 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) |
193 |
|
df-suc |
⊢ suc 𝑚 = ( 𝑚 ∪ { 𝑚 } ) |
194 |
193
|
raleqi |
⊢ ( ∀ 𝑥 ∈ suc 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑚 } ) ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) |
195 |
|
ralunb |
⊢ ( ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑚 } ) ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ↔ ( ∀ 𝑥 ∈ 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ∧ ∀ 𝑥 ∈ { 𝑚 } ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) |
196 |
194 195
|
bitri |
⊢ ( ∀ 𝑥 ∈ suc 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ↔ ( ∀ 𝑥 ∈ 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ∧ ∀ 𝑥 ∈ { 𝑚 } ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) |
197 |
192 196
|
bitrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( 𝑎 = 𝑏 ↔ ( ∀ 𝑥 ∈ 𝑚 ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ∧ ∀ 𝑥 ∈ { 𝑚 } ( 𝑎 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑥 ) ) ) ) |
198 |
131 190 197
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑎 ) = ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑏 ) ↔ 𝑎 = 𝑏 ) ) |
199 |
198
|
biimpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) ∧ ( 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∧ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ) ) → ( ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑎 ) = ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
200 |
199
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) → ∀ 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∀ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ( ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑎 ) = ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
201 |
|
dff13 |
⊢ ( ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m suc 𝑚 ) –1-1→ 𝐴 ↔ ( ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m suc 𝑚 ) ⟶ 𝐴 ∧ ∀ 𝑎 ∈ ( 𝐴 ↑m suc 𝑚 ) ∀ 𝑏 ∈ ( 𝐴 ↑m suc 𝑚 ) ( ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑎 ) = ( ( 𝐺 ‘ suc 𝑚 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
202 |
115 200 201
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ω ∧ ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 ) ) → ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m suc 𝑚 ) –1-1→ 𝐴 ) |
203 |
202
|
expr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ω ) → ( ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 → ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m suc 𝑚 ) –1-1→ 𝐴 ) ) |
204 |
203
|
expcom |
⊢ ( 𝑚 ∈ ω → ( 𝜑 → ( ( 𝐺 ‘ 𝑚 ) : ( 𝐴 ↑m 𝑚 ) –1-1→ 𝐴 → ( 𝐺 ‘ suc 𝑚 ) : ( 𝐴 ↑m suc 𝑚 ) –1-1→ 𝐴 ) ) ) |
205 |
23 30 37 52 204
|
finds2 |
⊢ ( 𝑦 ∈ ω → ( 𝜑 → ( 𝐺 ‘ 𝑦 ) : ( 𝐴 ↑m 𝑦 ) –1-1→ 𝐴 ) ) |
206 |
12 205
|
vtoclga |
⊢ ( 𝐶 ∈ ω → ( 𝜑 → ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝐶 ) –1-1→ 𝐴 ) ) |
207 |
206
|
impcom |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ω ) → ( 𝐺 ‘ 𝐶 ) : ( 𝐴 ↑m 𝐶 ) –1-1→ 𝐴 ) |