Step |
Hyp |
Ref |
Expression |
1 |
|
fseqenlem.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
fseqenlem.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
3 |
|
fseqenlem.f |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 × 𝐴 ) –1-1-onto→ 𝐴 ) |
4 |
|
fseqenlem.g |
⊢ 𝐺 = seqω ( ( 𝑛 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( 𝐴 ↑m suc 𝑛 ) ↦ ( ( 𝑓 ‘ ( 𝑥 ↾ 𝑛 ) ) 𝐹 ( 𝑥 ‘ 𝑛 ) ) ) ) , { 〈 ∅ , 𝐵 〉 } ) |
5 |
|
fseqenlem.k |
⊢ 𝐾 = ( 𝑦 ∈ ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) ↦ 〈 dom 𝑦 , ( ( 𝐺 ‘ dom 𝑦 ) ‘ 𝑦 ) 〉 ) |
6 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) ↔ ∃ 𝑘 ∈ ω 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) |
7 |
|
elmapi |
⊢ ( 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) → 𝑦 : 𝑘 ⟶ 𝐴 ) |
8 |
7
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) ) → 𝑦 : 𝑘 ⟶ 𝐴 ) |
9 |
8
|
fdmd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) ) → dom 𝑦 = 𝑘 ) |
10 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) ) → 𝑘 ∈ ω ) |
11 |
9 10
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) ) → dom 𝑦 ∈ ω ) |
12 |
9
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) ) → ( 𝐺 ‘ dom 𝑦 ) = ( 𝐺 ‘ 𝑘 ) ) |
13 |
12
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) ) → ( ( 𝐺 ‘ dom 𝑦 ) ‘ 𝑦 ) = ( ( 𝐺 ‘ 𝑘 ) ‘ 𝑦 ) ) |
14 |
1 2 3 4
|
fseqenlem1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ω ) → ( 𝐺 ‘ 𝑘 ) : ( 𝐴 ↑m 𝑘 ) –1-1→ 𝐴 ) |
15 |
14
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) ) → ( 𝐺 ‘ 𝑘 ) : ( 𝐴 ↑m 𝑘 ) –1-1→ 𝐴 ) |
16 |
|
f1f |
⊢ ( ( 𝐺 ‘ 𝑘 ) : ( 𝐴 ↑m 𝑘 ) –1-1→ 𝐴 → ( 𝐺 ‘ 𝑘 ) : ( 𝐴 ↑m 𝑘 ) ⟶ 𝐴 ) |
17 |
15 16
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) ) → ( 𝐺 ‘ 𝑘 ) : ( 𝐴 ↑m 𝑘 ) ⟶ 𝐴 ) |
18 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) ) → 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) |
19 |
17 18
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) ) → ( ( 𝐺 ‘ 𝑘 ) ‘ 𝑦 ) ∈ 𝐴 ) |
20 |
13 19
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) ) → ( ( 𝐺 ‘ dom 𝑦 ) ‘ 𝑦 ) ∈ 𝐴 ) |
21 |
11 20
|
opelxpd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ω ∧ 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) ) ) → 〈 dom 𝑦 , ( ( 𝐺 ‘ dom 𝑦 ) ‘ 𝑦 ) 〉 ∈ ( ω × 𝐴 ) ) |
22 |
21
|
rexlimdvaa |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ω 𝑦 ∈ ( 𝐴 ↑m 𝑘 ) → 〈 dom 𝑦 , ( ( 𝐺 ‘ dom 𝑦 ) ‘ 𝑦 ) 〉 ∈ ( ω × 𝐴 ) ) ) |
23 |
6 22
|
syl5bi |
⊢ ( 𝜑 → ( 𝑦 ∈ ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) → 〈 dom 𝑦 , ( ( 𝐺 ‘ dom 𝑦 ) ‘ 𝑦 ) 〉 ∈ ( ω × 𝐴 ) ) ) |
24 |
23
|
imp |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) ) → 〈 dom 𝑦 , ( ( 𝐺 ‘ dom 𝑦 ) ‘ 𝑦 ) 〉 ∈ ( ω × 𝐴 ) ) |
25 |
24 5
|
fmptd |
⊢ ( 𝜑 → 𝐾 : ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) ⟶ ( ω × 𝐴 ) ) |
26 |
|
ffun |
⊢ ( 𝐾 : ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) ⟶ ( ω × 𝐴 ) → Fun 𝐾 ) |
27 |
|
funbrfv2b |
⊢ ( Fun 𝐾 → ( 𝑧 𝐾 𝑤 ↔ ( 𝑧 ∈ dom 𝐾 ∧ ( 𝐾 ‘ 𝑧 ) = 𝑤 ) ) ) |
28 |
25 26 27
|
3syl |
⊢ ( 𝜑 → ( 𝑧 𝐾 𝑤 ↔ ( 𝑧 ∈ dom 𝐾 ∧ ( 𝐾 ‘ 𝑧 ) = 𝑤 ) ) ) |
29 |
28
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → ( 𝐾 ‘ 𝑧 ) = 𝑤 ) |
30 |
28
|
simprbda |
⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → 𝑧 ∈ dom 𝐾 ) |
31 |
25
|
fdmd |
⊢ ( 𝜑 → dom 𝐾 = ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → dom 𝐾 = ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) ) |
33 |
30 32
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → 𝑧 ∈ ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) ) |
34 |
|
dmeq |
⊢ ( 𝑦 = 𝑧 → dom 𝑦 = dom 𝑧 ) |
35 |
34
|
fveq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝐺 ‘ dom 𝑦 ) = ( 𝐺 ‘ dom 𝑧 ) ) |
36 |
|
id |
⊢ ( 𝑦 = 𝑧 → 𝑦 = 𝑧 ) |
37 |
35 36
|
fveq12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐺 ‘ dom 𝑦 ) ‘ 𝑦 ) = ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) ) |
38 |
34 37
|
opeq12d |
⊢ ( 𝑦 = 𝑧 → 〈 dom 𝑦 , ( ( 𝐺 ‘ dom 𝑦 ) ‘ 𝑦 ) 〉 = 〈 dom 𝑧 , ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) 〉 ) |
39 |
|
opex |
⊢ 〈 dom 𝑧 , ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) 〉 ∈ V |
40 |
38 5 39
|
fvmpt |
⊢ ( 𝑧 ∈ ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) → ( 𝐾 ‘ 𝑧 ) = 〈 dom 𝑧 , ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) 〉 ) |
41 |
33 40
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → ( 𝐾 ‘ 𝑧 ) = 〈 dom 𝑧 , ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) 〉 ) |
42 |
29 41
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → 𝑤 = 〈 dom 𝑧 , ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) 〉 ) |
43 |
42
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → ( 1st ‘ 𝑤 ) = ( 1st ‘ 〈 dom 𝑧 , ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) 〉 ) ) |
44 |
|
vex |
⊢ 𝑧 ∈ V |
45 |
44
|
dmex |
⊢ dom 𝑧 ∈ V |
46 |
|
fvex |
⊢ ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) ∈ V |
47 |
45 46
|
op1st |
⊢ ( 1st ‘ 〈 dom 𝑧 , ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) 〉 ) = dom 𝑧 |
48 |
43 47
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → ( 1st ‘ 𝑤 ) = dom 𝑧 ) |
49 |
48
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → ( 𝐺 ‘ ( 1st ‘ 𝑤 ) ) = ( 𝐺 ‘ dom 𝑧 ) ) |
50 |
49
|
cnveqd |
⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → ◡ ( 𝐺 ‘ ( 1st ‘ 𝑤 ) ) = ◡ ( 𝐺 ‘ dom 𝑧 ) ) |
51 |
42
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → ( 2nd ‘ 𝑤 ) = ( 2nd ‘ 〈 dom 𝑧 , ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) 〉 ) ) |
52 |
45 46
|
op2nd |
⊢ ( 2nd ‘ 〈 dom 𝑧 , ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) 〉 ) = ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) |
53 |
51 52
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → ( 2nd ‘ 𝑤 ) = ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) ) |
54 |
50 53
|
fveq12d |
⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → ( ◡ ( 𝐺 ‘ ( 1st ‘ 𝑤 ) ) ‘ ( 2nd ‘ 𝑤 ) ) = ( ◡ ( 𝐺 ‘ dom 𝑧 ) ‘ ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) ) ) |
55 |
|
eliun |
⊢ ( 𝑧 ∈ ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) ↔ ∃ 𝑘 ∈ ω 𝑧 ∈ ( 𝐴 ↑m 𝑘 ) ) |
56 |
|
elmapi |
⊢ ( 𝑧 ∈ ( 𝐴 ↑m 𝑘 ) → 𝑧 : 𝑘 ⟶ 𝐴 ) |
57 |
56
|
adantl |
⊢ ( ( 𝑘 ∈ ω ∧ 𝑧 ∈ ( 𝐴 ↑m 𝑘 ) ) → 𝑧 : 𝑘 ⟶ 𝐴 ) |
58 |
57
|
fdmd |
⊢ ( ( 𝑘 ∈ ω ∧ 𝑧 ∈ ( 𝐴 ↑m 𝑘 ) ) → dom 𝑧 = 𝑘 ) |
59 |
|
simpl |
⊢ ( ( 𝑘 ∈ ω ∧ 𝑧 ∈ ( 𝐴 ↑m 𝑘 ) ) → 𝑘 ∈ ω ) |
60 |
58 59
|
eqeltrd |
⊢ ( ( 𝑘 ∈ ω ∧ 𝑧 ∈ ( 𝐴 ↑m 𝑘 ) ) → dom 𝑧 ∈ ω ) |
61 |
|
simpr |
⊢ ( ( 𝑘 ∈ ω ∧ 𝑧 ∈ ( 𝐴 ↑m 𝑘 ) ) → 𝑧 ∈ ( 𝐴 ↑m 𝑘 ) ) |
62 |
58
|
oveq2d |
⊢ ( ( 𝑘 ∈ ω ∧ 𝑧 ∈ ( 𝐴 ↑m 𝑘 ) ) → ( 𝐴 ↑m dom 𝑧 ) = ( 𝐴 ↑m 𝑘 ) ) |
63 |
61 62
|
eleqtrrd |
⊢ ( ( 𝑘 ∈ ω ∧ 𝑧 ∈ ( 𝐴 ↑m 𝑘 ) ) → 𝑧 ∈ ( 𝐴 ↑m dom 𝑧 ) ) |
64 |
60 63
|
jca |
⊢ ( ( 𝑘 ∈ ω ∧ 𝑧 ∈ ( 𝐴 ↑m 𝑘 ) ) → ( dom 𝑧 ∈ ω ∧ 𝑧 ∈ ( 𝐴 ↑m dom 𝑧 ) ) ) |
65 |
64
|
rexlimiva |
⊢ ( ∃ 𝑘 ∈ ω 𝑧 ∈ ( 𝐴 ↑m 𝑘 ) → ( dom 𝑧 ∈ ω ∧ 𝑧 ∈ ( 𝐴 ↑m dom 𝑧 ) ) ) |
66 |
55 65
|
sylbi |
⊢ ( 𝑧 ∈ ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) → ( dom 𝑧 ∈ ω ∧ 𝑧 ∈ ( 𝐴 ↑m dom 𝑧 ) ) ) |
67 |
33 66
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → ( dom 𝑧 ∈ ω ∧ 𝑧 ∈ ( 𝐴 ↑m dom 𝑧 ) ) ) |
68 |
67
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → dom 𝑧 ∈ ω ) |
69 |
1 2 3 4
|
fseqenlem1 |
⊢ ( ( 𝜑 ∧ dom 𝑧 ∈ ω ) → ( 𝐺 ‘ dom 𝑧 ) : ( 𝐴 ↑m dom 𝑧 ) –1-1→ 𝐴 ) |
70 |
68 69
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → ( 𝐺 ‘ dom 𝑧 ) : ( 𝐴 ↑m dom 𝑧 ) –1-1→ 𝐴 ) |
71 |
|
f1f1orn |
⊢ ( ( 𝐺 ‘ dom 𝑧 ) : ( 𝐴 ↑m dom 𝑧 ) –1-1→ 𝐴 → ( 𝐺 ‘ dom 𝑧 ) : ( 𝐴 ↑m dom 𝑧 ) –1-1-onto→ ran ( 𝐺 ‘ dom 𝑧 ) ) |
72 |
70 71
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → ( 𝐺 ‘ dom 𝑧 ) : ( 𝐴 ↑m dom 𝑧 ) –1-1-onto→ ran ( 𝐺 ‘ dom 𝑧 ) ) |
73 |
67
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → 𝑧 ∈ ( 𝐴 ↑m dom 𝑧 ) ) |
74 |
|
f1ocnvfv1 |
⊢ ( ( ( 𝐺 ‘ dom 𝑧 ) : ( 𝐴 ↑m dom 𝑧 ) –1-1-onto→ ran ( 𝐺 ‘ dom 𝑧 ) ∧ 𝑧 ∈ ( 𝐴 ↑m dom 𝑧 ) ) → ( ◡ ( 𝐺 ‘ dom 𝑧 ) ‘ ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) ) = 𝑧 ) |
75 |
72 73 74
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → ( ◡ ( 𝐺 ‘ dom 𝑧 ) ‘ ( ( 𝐺 ‘ dom 𝑧 ) ‘ 𝑧 ) ) = 𝑧 ) |
76 |
54 75
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑧 𝐾 𝑤 ) → 𝑧 = ( ◡ ( 𝐺 ‘ ( 1st ‘ 𝑤 ) ) ‘ ( 2nd ‘ 𝑤 ) ) ) |
77 |
76
|
ex |
⊢ ( 𝜑 → ( 𝑧 𝐾 𝑤 → 𝑧 = ( ◡ ( 𝐺 ‘ ( 1st ‘ 𝑤 ) ) ‘ ( 2nd ‘ 𝑤 ) ) ) ) |
78 |
77
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑧 ( 𝑧 𝐾 𝑤 → 𝑧 = ( ◡ ( 𝐺 ‘ ( 1st ‘ 𝑤 ) ) ‘ ( 2nd ‘ 𝑤 ) ) ) ) |
79 |
|
mo2icl |
⊢ ( ∀ 𝑧 ( 𝑧 𝐾 𝑤 → 𝑧 = ( ◡ ( 𝐺 ‘ ( 1st ‘ 𝑤 ) ) ‘ ( 2nd ‘ 𝑤 ) ) ) → ∃* 𝑧 𝑧 𝐾 𝑤 ) |
80 |
78 79
|
syl |
⊢ ( 𝜑 → ∃* 𝑧 𝑧 𝐾 𝑤 ) |
81 |
80
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑤 ∃* 𝑧 𝑧 𝐾 𝑤 ) |
82 |
|
dff12 |
⊢ ( 𝐾 : ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) –1-1→ ( ω × 𝐴 ) ↔ ( 𝐾 : ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) ⟶ ( ω × 𝐴 ) ∧ ∀ 𝑤 ∃* 𝑧 𝑧 𝐾 𝑤 ) ) |
83 |
25 81 82
|
sylanbrc |
⊢ ( 𝜑 → 𝐾 : ∪ 𝑘 ∈ ω ( 𝐴 ↑m 𝑘 ) –1-1→ ( ω × 𝐴 ) ) |