| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frn | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ  →  ran  𝐹  ⊆  ℝ ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ )  →  ran  𝐹  ⊆  ℝ ) | 
						
							| 3 |  | fzfi | ⊢ ( 𝑀 ... 𝑁 )  ∈  Fin | 
						
							| 4 |  | ffn | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ  →  𝐹  Fn  ( 𝑀 ... 𝑁 ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ )  →  𝐹  Fn  ( 𝑀 ... 𝑁 ) ) | 
						
							| 6 |  | dffn4 | ⊢ ( 𝐹  Fn  ( 𝑀 ... 𝑁 )  ↔  𝐹 : ( 𝑀 ... 𝑁 ) –onto→ ran  𝐹 ) | 
						
							| 7 | 5 6 | sylib | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ )  →  𝐹 : ( 𝑀 ... 𝑁 ) –onto→ ran  𝐹 ) | 
						
							| 8 |  | fofi | ⊢ ( ( ( 𝑀 ... 𝑁 )  ∈  Fin  ∧  𝐹 : ( 𝑀 ... 𝑁 ) –onto→ ran  𝐹 )  →  ran  𝐹  ∈  Fin ) | 
						
							| 9 | 3 7 8 | sylancr | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ )  →  ran  𝐹  ∈  Fin ) | 
						
							| 10 |  | fdm | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ  →  dom  𝐹  =  ( 𝑀 ... 𝑁 ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ )  →  dom  𝐹  =  ( 𝑀 ... 𝑁 ) ) | 
						
							| 12 |  | simpl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 13 |  | fzn0 | ⊢ ( ( 𝑀 ... 𝑁 )  ≠  ∅  ↔  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 14 | 12 13 | sylibr | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ )  →  ( 𝑀 ... 𝑁 )  ≠  ∅ ) | 
						
							| 15 | 11 14 | eqnetrd | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ )  →  dom  𝐹  ≠  ∅ ) | 
						
							| 16 |  | dm0rn0 | ⊢ ( dom  𝐹  =  ∅  ↔  ran  𝐹  =  ∅ ) | 
						
							| 17 | 16 | necon3bii | ⊢ ( dom  𝐹  ≠  ∅  ↔  ran  𝐹  ≠  ∅ ) | 
						
							| 18 | 15 17 | sylib | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ )  →  ran  𝐹  ≠  ∅ ) | 
						
							| 19 |  | ltso | ⊢  <   Or  ℝ | 
						
							| 20 |  | fisupcl | ⊢ ( (  <   Or  ℝ  ∧  ( ran  𝐹  ∈  Fin  ∧  ran  𝐹  ≠  ∅  ∧  ran  𝐹  ⊆  ℝ ) )  →  sup ( ran  𝐹 ,  ℝ ,   <  )  ∈  ran  𝐹 ) | 
						
							| 21 | 19 20 | mpan | ⊢ ( ( ran  𝐹  ∈  Fin  ∧  ran  𝐹  ≠  ∅  ∧  ran  𝐹  ⊆  ℝ )  →  sup ( ran  𝐹 ,  ℝ ,   <  )  ∈  ran  𝐹 ) | 
						
							| 22 | 9 18 2 21 | syl3anc | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ )  →  sup ( ran  𝐹 ,  ℝ ,   <  )  ∈  ran  𝐹 ) | 
						
							| 23 | 2 22 | sseldd | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ )  →  sup ( ran  𝐹 ,  ℝ ,   <  )  ∈  ℝ ) |