| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frn | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ  →  ran  𝐹  ⊆  ℝ ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  ∧  𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ )  →  ran  𝐹  ⊆  ℝ ) | 
						
							| 3 |  | fdm | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ  →  dom  𝐹  =  ( 𝑀 ... 𝑁 ) ) | 
						
							| 4 |  | ne0i | ⊢ ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  →  ( 𝑀 ... 𝑁 )  ≠  ∅ ) | 
						
							| 5 |  | dm0rn0 | ⊢ ( dom  𝐹  =  ∅  ↔  ran  𝐹  =  ∅ ) | 
						
							| 6 |  | eqeq1 | ⊢ ( dom  𝐹  =  ( 𝑀 ... 𝑁 )  →  ( dom  𝐹  =  ∅  ↔  ( 𝑀 ... 𝑁 )  =  ∅ ) ) | 
						
							| 7 | 6 | biimpd | ⊢ ( dom  𝐹  =  ( 𝑀 ... 𝑁 )  →  ( dom  𝐹  =  ∅  →  ( 𝑀 ... 𝑁 )  =  ∅ ) ) | 
						
							| 8 | 5 7 | biimtrrid | ⊢ ( dom  𝐹  =  ( 𝑀 ... 𝑁 )  →  ( ran  𝐹  =  ∅  →  ( 𝑀 ... 𝑁 )  =  ∅ ) ) | 
						
							| 9 | 8 | necon3d | ⊢ ( dom  𝐹  =  ( 𝑀 ... 𝑁 )  →  ( ( 𝑀 ... 𝑁 )  ≠  ∅  →  ran  𝐹  ≠  ∅ ) ) | 
						
							| 10 | 4 9 | mpan9 | ⊢ ( ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  ∧  dom  𝐹  =  ( 𝑀 ... 𝑁 ) )  →  ran  𝐹  ≠  ∅ ) | 
						
							| 11 | 3 10 | sylan2 | ⊢ ( ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  ∧  𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ )  →  ran  𝐹  ≠  ∅ ) | 
						
							| 12 |  | fsequb2 | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  ∧  𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 ) | 
						
							| 14 |  | ffn | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ  →  𝐹  Fn  ( 𝑀 ... 𝑁 ) ) | 
						
							| 15 |  | fnfvelrn | ⊢ ( ( 𝐹  Fn  ( 𝑀 ... 𝑁 )  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝐾 )  ∈  ran  𝐹 ) | 
						
							| 16 | 15 | ancoms | ⊢ ( ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  ∧  𝐹  Fn  ( 𝑀 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝐾 )  ∈  ran  𝐹 ) | 
						
							| 17 | 14 16 | sylan2 | ⊢ ( ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  ∧  𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ )  →  ( 𝐹 ‘ 𝐾 )  ∈  ran  𝐹 ) | 
						
							| 18 | 2 11 13 17 | suprubd | ⊢ ( ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  ∧  𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ )  →  ( 𝐹 ‘ 𝐾 )  ≤  sup ( ran  𝐹 ,  ℝ ,   <  ) ) |