| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frn |
⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ → ran 𝐹 ⊆ ℝ ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → ran 𝐹 ⊆ ℝ ) |
| 3 |
|
fdm |
⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ → dom 𝐹 = ( 𝑀 ... 𝑁 ) ) |
| 4 |
|
ne0i |
⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝑀 ... 𝑁 ) ≠ ∅ ) |
| 5 |
|
dm0rn0 |
⊢ ( dom 𝐹 = ∅ ↔ ran 𝐹 = ∅ ) |
| 6 |
|
eqeq1 |
⊢ ( dom 𝐹 = ( 𝑀 ... 𝑁 ) → ( dom 𝐹 = ∅ ↔ ( 𝑀 ... 𝑁 ) = ∅ ) ) |
| 7 |
6
|
biimpd |
⊢ ( dom 𝐹 = ( 𝑀 ... 𝑁 ) → ( dom 𝐹 = ∅ → ( 𝑀 ... 𝑁 ) = ∅ ) ) |
| 8 |
5 7
|
biimtrrid |
⊢ ( dom 𝐹 = ( 𝑀 ... 𝑁 ) → ( ran 𝐹 = ∅ → ( 𝑀 ... 𝑁 ) = ∅ ) ) |
| 9 |
8
|
necon3d |
⊢ ( dom 𝐹 = ( 𝑀 ... 𝑁 ) → ( ( 𝑀 ... 𝑁 ) ≠ ∅ → ran 𝐹 ≠ ∅ ) ) |
| 10 |
4 9
|
mpan9 |
⊢ ( ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∧ dom 𝐹 = ( 𝑀 ... 𝑁 ) ) → ran 𝐹 ≠ ∅ ) |
| 11 |
3 10
|
sylan2 |
⊢ ( ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → ran 𝐹 ≠ ∅ ) |
| 12 |
|
fsequb2 |
⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) |
| 14 |
|
ffn |
⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ → 𝐹 Fn ( 𝑀 ... 𝑁 ) ) |
| 15 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn ( 𝑀 ... 𝑁 ) ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝐾 ) ∈ ran 𝐹 ) |
| 16 |
15
|
ancoms |
⊢ ( ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐹 Fn ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝐾 ) ∈ ran 𝐹 ) |
| 17 |
14 16
|
sylan2 |
⊢ ( ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → ( 𝐹 ‘ 𝐾 ) ∈ ran 𝐹 ) |
| 18 |
2 11 13 17
|
suprubd |
⊢ ( ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → ( 𝐹 ‘ 𝐾 ) ≤ sup ( ran 𝐹 , ℝ , < ) ) |