| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzfi | ⊢ ( 𝑀 ... 𝑁 )  ∈  Fin | 
						
							| 2 |  | fimaxre3 | ⊢ ( ( ( 𝑀 ... 𝑁 )  ∈  Fin  ∧  ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑦 ) | 
						
							| 3 | 1 2 | mpan | ⊢ ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑦 ) | 
						
							| 4 |  | r19.26 | ⊢ ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑘 )  ≤  𝑦 )  ↔  ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ  ∧  ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑦 ) ) | 
						
							| 5 |  | peano2re | ⊢ ( 𝑦  ∈  ℝ  →  ( 𝑦  +  1 )  ∈  ℝ ) | 
						
							| 6 |  | ltp1 | ⊢ ( 𝑦  ∈  ℝ  →  𝑦  <  ( 𝑦  +  1 ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝑦  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℝ )  →  𝑦  <  ( 𝑦  +  1 ) ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝑦  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℝ )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 9 |  | simpl | ⊢ ( ( 𝑦  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℝ )  →  𝑦  ∈  ℝ ) | 
						
							| 10 | 5 | adantr | ⊢ ( ( 𝑦  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℝ )  →  ( 𝑦  +  1 )  ∈  ℝ ) | 
						
							| 11 |  | lelttr | ⊢ ( ( ( 𝐹 ‘ 𝑘 )  ∈  ℝ  ∧  𝑦  ∈  ℝ  ∧  ( 𝑦  +  1 )  ∈  ℝ )  →  ( ( ( 𝐹 ‘ 𝑘 )  ≤  𝑦  ∧  𝑦  <  ( 𝑦  +  1 ) )  →  ( 𝐹 ‘ 𝑘 )  <  ( 𝑦  +  1 ) ) ) | 
						
							| 12 | 8 9 10 11 | syl3anc | ⊢ ( ( 𝑦  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℝ )  →  ( ( ( 𝐹 ‘ 𝑘 )  ≤  𝑦  ∧  𝑦  <  ( 𝑦  +  1 ) )  →  ( 𝐹 ‘ 𝑘 )  <  ( 𝑦  +  1 ) ) ) | 
						
							| 13 | 7 12 | mpan2d | ⊢ ( ( 𝑦  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑘 )  ≤  𝑦  →  ( 𝐹 ‘ 𝑘 )  <  ( 𝑦  +  1 ) ) ) | 
						
							| 14 | 13 | expimpd | ⊢ ( 𝑦  ∈  ℝ  →  ( ( ( 𝐹 ‘ 𝑘 )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑘 )  ≤  𝑦 )  →  ( 𝐹 ‘ 𝑘 )  <  ( 𝑦  +  1 ) ) ) | 
						
							| 15 | 14 | ralimdv | ⊢ ( 𝑦  ∈  ℝ  →  ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑘 )  ≤  𝑦 )  →  ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  <  ( 𝑦  +  1 ) ) ) | 
						
							| 16 |  | brralrspcev | ⊢ ( ( ( 𝑦  +  1 )  ∈  ℝ  ∧  ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  <  ( 𝑦  +  1 ) )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  <  𝑥 ) | 
						
							| 17 | 5 15 16 | syl6an | ⊢ ( 𝑦  ∈  ℝ  →  ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑘 )  ≤  𝑦 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  <  𝑥 ) ) | 
						
							| 18 | 4 17 | biimtrrid | ⊢ ( 𝑦  ∈  ℝ  →  ( ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ  ∧  ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑦 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  <  𝑥 ) ) | 
						
							| 19 | 18 | expd | ⊢ ( 𝑦  ∈  ℝ  →  ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ  →  ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑦  →  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  <  𝑥 ) ) ) | 
						
							| 20 | 19 | impcom | ⊢ ( ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑦  →  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  <  𝑥 ) ) | 
						
							| 21 | 20 | rexlimdva | ⊢ ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ  →  ( ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑦  →  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  <  𝑥 ) ) | 
						
							| 22 | 3 21 | mpd | ⊢ ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ  →  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  <  𝑥 ) |