| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzfi |
⊢ ( 𝑀 ... 𝑁 ) ∈ Fin |
| 2 |
|
fimaxre3 |
⊢ ( ( ( 𝑀 ... 𝑁 ) ∈ Fin ∧ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ) |
| 3 |
1 2
|
mpan |
⊢ ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ) |
| 4 |
|
r19.26 |
⊢ ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ) ↔ ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ) ) |
| 5 |
|
peano2re |
⊢ ( 𝑦 ∈ ℝ → ( 𝑦 + 1 ) ∈ ℝ ) |
| 6 |
|
ltp1 |
⊢ ( 𝑦 ∈ ℝ → 𝑦 < ( 𝑦 + 1 ) ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → 𝑦 < ( 𝑦 + 1 ) ) |
| 8 |
|
simpr |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 9 |
|
simpl |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → 𝑦 ∈ ℝ ) |
| 10 |
5
|
adantr |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → ( 𝑦 + 1 ) ∈ ℝ ) |
| 11 |
|
lelttr |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ ( 𝑦 + 1 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ∧ 𝑦 < ( 𝑦 + 1 ) ) → ( 𝐹 ‘ 𝑘 ) < ( 𝑦 + 1 ) ) ) |
| 12 |
8 9 10 11
|
syl3anc |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ∧ 𝑦 < ( 𝑦 + 1 ) ) → ( 𝐹 ‘ 𝑘 ) < ( 𝑦 + 1 ) ) ) |
| 13 |
7 12
|
mpan2d |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 → ( 𝐹 ‘ 𝑘 ) < ( 𝑦 + 1 ) ) ) |
| 14 |
13
|
expimpd |
⊢ ( 𝑦 ∈ ℝ → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ) → ( 𝐹 ‘ 𝑘 ) < ( 𝑦 + 1 ) ) ) |
| 15 |
14
|
ralimdv |
⊢ ( 𝑦 ∈ ℝ → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ) → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < ( 𝑦 + 1 ) ) ) |
| 16 |
|
brralrspcev |
⊢ ( ( ( 𝑦 + 1 ) ∈ ℝ ∧ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < ( 𝑦 + 1 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < 𝑥 ) |
| 17 |
5 15 16
|
syl6an |
⊢ ( 𝑦 ∈ ℝ → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < 𝑥 ) ) |
| 18 |
4 17
|
biimtrrid |
⊢ ( 𝑦 ∈ ℝ → ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < 𝑥 ) ) |
| 19 |
18
|
expd |
⊢ ( 𝑦 ∈ ℝ → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < 𝑥 ) ) ) |
| 20 |
19
|
impcom |
⊢ ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < 𝑥 ) ) |
| 21 |
20
|
rexlimdva |
⊢ ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ → ( ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < 𝑥 ) ) |
| 22 |
3 21
|
mpd |
⊢ ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < 𝑥 ) |