| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzfi | ⊢ ( 𝑀 ... 𝑁 )  ∈  Fin | 
						
							| 2 |  | ffvelcdm | ⊢ ( ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 3 | 2 | ralrimiva | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ  →  ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 4 |  | fimaxre3 | ⊢ ( ( ( 𝑀 ... 𝑁 )  ∈  Fin  ∧  ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) | 
						
							| 5 | 1 3 4 | sylancr | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ  →  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) | 
						
							| 6 |  | ffn | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ  →  𝐹  Fn  ( 𝑀 ... 𝑁 ) ) | 
						
							| 7 |  | breq1 | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑘 )  →  ( 𝑦  ≤  𝑥  ↔  ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) ) | 
						
							| 8 | 7 | ralrn | ⊢ ( 𝐹  Fn  ( 𝑀 ... 𝑁 )  →  ( ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥  ↔  ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) ) | 
						
							| 9 | 6 8 | syl | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ  →  ( ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥  ↔  ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) ) | 
						
							| 10 | 9 | rexbidv | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ  →  ( ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥  ↔  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) ) | 
						
							| 11 | 5 10 | mpbird | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 ) |