Metamath Proof Explorer


Theorem fset0

Description: The set of functions from the empty set is the singleton containing the empty set. (Contributed by AV, 13-Sep-2024)

Ref Expression
Assertion fset0 { 𝑓𝑓 : ∅ ⟶ 𝐵 } = { ∅ }

Proof

Step Hyp Ref Expression
1 f0bi ( 𝑓 : ∅ ⟶ 𝐵𝑓 = ∅ )
2 1 abbii { 𝑓𝑓 : ∅ ⟶ 𝐵 } = { 𝑓𝑓 = ∅ }
3 df-sn { ∅ } = { 𝑓𝑓 = ∅ }
4 2 3 eqtr4i { 𝑓𝑓 : ∅ ⟶ 𝐵 } = { ∅ }