Metamath Proof Explorer


Theorem fsetcdmex

Description: The class of all functions from a nonempty set A into a class B is a set iff B is a set . (Contributed by AV, 15-Sep-2024)

Ref Expression
Assertion fsetcdmex ( ( 𝐴𝑉𝐴 ≠ ∅ ) → ( 𝐵 ∈ V ↔ { 𝑓𝑓 : 𝐴𝐵 } ∈ V ) )

Proof

Step Hyp Ref Expression
1 fsetex ( 𝐵 ∈ V → { 𝑓𝑓 : 𝐴𝐵 } ∈ V )
2 fsetprcnex ( ( ( 𝐴𝑉𝐴 ≠ ∅ ) ∧ 𝐵 ∉ V ) → { 𝑓𝑓 : 𝐴𝐵 } ∉ V )
3 2 ex ( ( 𝐴𝑉𝐴 ≠ ∅ ) → ( 𝐵 ∉ V → { 𝑓𝑓 : 𝐴𝐵 } ∉ V ) )
4 df-nel ( 𝐵 ∉ V ↔ ¬ 𝐵 ∈ V )
5 df-nel ( { 𝑓𝑓 : 𝐴𝐵 } ∉ V ↔ ¬ { 𝑓𝑓 : 𝐴𝐵 } ∈ V )
6 3 4 5 3imtr3g ( ( 𝐴𝑉𝐴 ≠ ∅ ) → ( ¬ 𝐵 ∈ V → ¬ { 𝑓𝑓 : 𝐴𝐵 } ∈ V ) )
7 6 con4d ( ( 𝐴𝑉𝐴 ≠ ∅ ) → ( { 𝑓𝑓 : 𝐴𝐵 } ∈ V → 𝐵 ∈ V ) )
8 1 7 impbid2 ( ( 𝐴𝑉𝐴 ≠ ∅ ) → ( 𝐵 ∈ V ↔ { 𝑓𝑓 : 𝐴𝐵 } ∈ V ) )