Metamath Proof Explorer


Theorem fsetex

Description: The set of functions between two classes exists if the codomain exists. Generalization of mapex to arbitrary domains. (Contributed by AV, 14-Aug-2024)

Ref Expression
Assertion fsetex ( 𝐵𝑉 → { 𝑓𝑓 : 𝐴𝐵 } ∈ V )

Proof

Step Hyp Ref Expression
1 mapfset ( 𝐵𝑉 → { 𝑓𝑓 : 𝐴𝐵 } = ( 𝐵m 𝐴 ) )
2 ovex ( 𝐵m 𝐴 ) ∈ V
3 1 2 eqeltrdi ( 𝐵𝑉 → { 𝑓𝑓 : 𝐴𝐵 } ∈ V )