Metamath Proof Explorer


Theorem fsetfcdm

Description: The class of functions with a given domain and a given codomain is mapped, through evaluation at a point of the domain, into the codomain. (Contributed by AV, 15-Sep-2024)

Ref Expression
Hypotheses fsetfocdm.f 𝐹 = { 𝑓𝑓 : 𝐴𝐵 }
fsetfocdm.s 𝑆 = ( 𝑔𝐹 ↦ ( 𝑔𝑋 ) )
Assertion fsetfcdm ( 𝑋𝐴𝑆 : 𝐹𝐵 )

Proof

Step Hyp Ref Expression
1 fsetfocdm.f 𝐹 = { 𝑓𝑓 : 𝐴𝐵 }
2 fsetfocdm.s 𝑆 = ( 𝑔𝐹 ↦ ( 𝑔𝑋 ) )
3 vex 𝑔 ∈ V
4 feq1 ( 𝑓 = 𝑔 → ( 𝑓 : 𝐴𝐵𝑔 : 𝐴𝐵 ) )
5 3 4 1 elab2 ( 𝑔𝐹𝑔 : 𝐴𝐵 )
6 ffvelrn ( ( 𝑔 : 𝐴𝐵𝑋𝐴 ) → ( 𝑔𝑋 ) ∈ 𝐵 )
7 6 expcom ( 𝑋𝐴 → ( 𝑔 : 𝐴𝐵 → ( 𝑔𝑋 ) ∈ 𝐵 ) )
8 5 7 syl5bi ( 𝑋𝐴 → ( 𝑔𝐹 → ( 𝑔𝑋 ) ∈ 𝐵 ) )
9 8 imp ( ( 𝑋𝐴𝑔𝐹 ) → ( 𝑔𝑋 ) ∈ 𝐵 )
10 9 2 fmptd ( 𝑋𝐴𝑆 : 𝐹𝐵 )