Metamath Proof Explorer


Theorem fsetsspwxp

Description: The class of all functions from A into B is a subclass of the power class of the cartesion product of A and B . (Contributed by AV, 13-Sep-2024)

Ref Expression
Assertion fsetsspwxp { 𝑓𝑓 : 𝐴𝐵 } ⊆ 𝒫 ( 𝐴 × 𝐵 )

Proof

Step Hyp Ref Expression
1 fssxp ( 𝑔 : 𝐴𝐵𝑔 ⊆ ( 𝐴 × 𝐵 ) )
2 vex 𝑔 ∈ V
3 feq1 ( 𝑓 = 𝑔 → ( 𝑓 : 𝐴𝐵𝑔 : 𝐴𝐵 ) )
4 2 3 elab ( 𝑔 ∈ { 𝑓𝑓 : 𝐴𝐵 } ↔ 𝑔 : 𝐴𝐵 )
5 velpw ( 𝑔 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↔ 𝑔 ⊆ ( 𝐴 × 𝐵 ) )
6 1 4 5 3imtr4i ( 𝑔 ∈ { 𝑓𝑓 : 𝐴𝐵 } → 𝑔 ∈ 𝒫 ( 𝐴 × 𝐵 ) )
7 6 ssriv { 𝑓𝑓 : 𝐴𝐵 } ⊆ 𝒫 ( 𝐴 × 𝐵 )