| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsn2.1 |
⊢ 𝐴 ∈ V |
| 2 |
1
|
snid |
⊢ 𝐴 ∈ { 𝐴 } |
| 3 |
|
ffvelcdm |
⊢ ( ( 𝐹 : { 𝐴 } ⟶ 𝐵 ∧ 𝐴 ∈ { 𝐴 } ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) |
| 4 |
2 3
|
mpan2 |
⊢ ( 𝐹 : { 𝐴 } ⟶ 𝐵 → ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) |
| 5 |
|
ffn |
⊢ ( 𝐹 : { 𝐴 } ⟶ 𝐵 → 𝐹 Fn { 𝐴 } ) |
| 6 |
|
dffn3 |
⊢ ( 𝐹 Fn { 𝐴 } ↔ 𝐹 : { 𝐴 } ⟶ ran 𝐹 ) |
| 7 |
6
|
biimpi |
⊢ ( 𝐹 Fn { 𝐴 } → 𝐹 : { 𝐴 } ⟶ ran 𝐹 ) |
| 8 |
|
imadmrn |
⊢ ( 𝐹 “ dom 𝐹 ) = ran 𝐹 |
| 9 |
|
fndm |
⊢ ( 𝐹 Fn { 𝐴 } → dom 𝐹 = { 𝐴 } ) |
| 10 |
9
|
imaeq2d |
⊢ ( 𝐹 Fn { 𝐴 } → ( 𝐹 “ dom 𝐹 ) = ( 𝐹 “ { 𝐴 } ) ) |
| 11 |
8 10
|
eqtr3id |
⊢ ( 𝐹 Fn { 𝐴 } → ran 𝐹 = ( 𝐹 “ { 𝐴 } ) ) |
| 12 |
|
fnsnfv |
⊢ ( ( 𝐹 Fn { 𝐴 } ∧ 𝐴 ∈ { 𝐴 } ) → { ( 𝐹 ‘ 𝐴 ) } = ( 𝐹 “ { 𝐴 } ) ) |
| 13 |
2 12
|
mpan2 |
⊢ ( 𝐹 Fn { 𝐴 } → { ( 𝐹 ‘ 𝐴 ) } = ( 𝐹 “ { 𝐴 } ) ) |
| 14 |
11 13
|
eqtr4d |
⊢ ( 𝐹 Fn { 𝐴 } → ran 𝐹 = { ( 𝐹 ‘ 𝐴 ) } ) |
| 15 |
14
|
feq3d |
⊢ ( 𝐹 Fn { 𝐴 } → ( 𝐹 : { 𝐴 } ⟶ ran 𝐹 ↔ 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ) ) |
| 16 |
7 15
|
mpbid |
⊢ ( 𝐹 Fn { 𝐴 } → 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ) |
| 17 |
5 16
|
syl |
⊢ ( 𝐹 : { 𝐴 } ⟶ 𝐵 → 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ) |
| 18 |
4 17
|
jca |
⊢ ( 𝐹 : { 𝐴 } ⟶ 𝐵 → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ) ) |
| 19 |
|
snssi |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 → { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝐵 ) |
| 20 |
|
fss |
⊢ ( ( 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ∧ { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝐵 ) → 𝐹 : { 𝐴 } ⟶ 𝐵 ) |
| 21 |
20
|
ancoms |
⊢ ( ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝐵 ∧ 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ) → 𝐹 : { 𝐴 } ⟶ 𝐵 ) |
| 22 |
19 21
|
sylan |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ) → 𝐹 : { 𝐴 } ⟶ 𝐵 ) |
| 23 |
18 22
|
impbii |
⊢ ( 𝐹 : { 𝐴 } ⟶ 𝐵 ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ) ) |
| 24 |
|
fvex |
⊢ ( 𝐹 ‘ 𝐴 ) ∈ V |
| 25 |
1 24
|
fsn |
⊢ ( 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ↔ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) |
| 26 |
25
|
anbi2i |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ) ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) ) |
| 27 |
23 26
|
bitri |
⊢ ( 𝐹 : { 𝐴 } ⟶ 𝐵 ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) ) |