Step |
Hyp |
Ref |
Expression |
1 |
|
fsn2.1 |
⊢ 𝐴 ∈ V |
2 |
1
|
snid |
⊢ 𝐴 ∈ { 𝐴 } |
3 |
|
ffvelrn |
⊢ ( ( 𝐹 : { 𝐴 } ⟶ 𝐵 ∧ 𝐴 ∈ { 𝐴 } ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) |
4 |
2 3
|
mpan2 |
⊢ ( 𝐹 : { 𝐴 } ⟶ 𝐵 → ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) |
5 |
|
ffn |
⊢ ( 𝐹 : { 𝐴 } ⟶ 𝐵 → 𝐹 Fn { 𝐴 } ) |
6 |
|
dffn3 |
⊢ ( 𝐹 Fn { 𝐴 } ↔ 𝐹 : { 𝐴 } ⟶ ran 𝐹 ) |
7 |
6
|
biimpi |
⊢ ( 𝐹 Fn { 𝐴 } → 𝐹 : { 𝐴 } ⟶ ran 𝐹 ) |
8 |
|
imadmrn |
⊢ ( 𝐹 “ dom 𝐹 ) = ran 𝐹 |
9 |
|
fndm |
⊢ ( 𝐹 Fn { 𝐴 } → dom 𝐹 = { 𝐴 } ) |
10 |
9
|
imaeq2d |
⊢ ( 𝐹 Fn { 𝐴 } → ( 𝐹 “ dom 𝐹 ) = ( 𝐹 “ { 𝐴 } ) ) |
11 |
8 10
|
eqtr3id |
⊢ ( 𝐹 Fn { 𝐴 } → ran 𝐹 = ( 𝐹 “ { 𝐴 } ) ) |
12 |
|
fnsnfv |
⊢ ( ( 𝐹 Fn { 𝐴 } ∧ 𝐴 ∈ { 𝐴 } ) → { ( 𝐹 ‘ 𝐴 ) } = ( 𝐹 “ { 𝐴 } ) ) |
13 |
2 12
|
mpan2 |
⊢ ( 𝐹 Fn { 𝐴 } → { ( 𝐹 ‘ 𝐴 ) } = ( 𝐹 “ { 𝐴 } ) ) |
14 |
11 13
|
eqtr4d |
⊢ ( 𝐹 Fn { 𝐴 } → ran 𝐹 = { ( 𝐹 ‘ 𝐴 ) } ) |
15 |
14
|
feq3d |
⊢ ( 𝐹 Fn { 𝐴 } → ( 𝐹 : { 𝐴 } ⟶ ran 𝐹 ↔ 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ) ) |
16 |
7 15
|
mpbid |
⊢ ( 𝐹 Fn { 𝐴 } → 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ) |
17 |
5 16
|
syl |
⊢ ( 𝐹 : { 𝐴 } ⟶ 𝐵 → 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ) |
18 |
4 17
|
jca |
⊢ ( 𝐹 : { 𝐴 } ⟶ 𝐵 → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ) ) |
19 |
|
snssi |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 → { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝐵 ) |
20 |
|
fss |
⊢ ( ( 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ∧ { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝐵 ) → 𝐹 : { 𝐴 } ⟶ 𝐵 ) |
21 |
20
|
ancoms |
⊢ ( ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝐵 ∧ 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ) → 𝐹 : { 𝐴 } ⟶ 𝐵 ) |
22 |
19 21
|
sylan |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ) → 𝐹 : { 𝐴 } ⟶ 𝐵 ) |
23 |
18 22
|
impbii |
⊢ ( 𝐹 : { 𝐴 } ⟶ 𝐵 ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ) ) |
24 |
|
fvex |
⊢ ( 𝐹 ‘ 𝐴 ) ∈ V |
25 |
1 24
|
fsn |
⊢ ( 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ↔ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) |
26 |
25
|
anbi2i |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐹 : { 𝐴 } ⟶ { ( 𝐹 ‘ 𝐴 ) } ) ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) ) |
27 |
23 26
|
bitri |
⊢ ( 𝐹 : { 𝐴 } ⟶ 𝐵 ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) ) |