Metamath Proof Explorer


Theorem fsnd

Description: A singleton of an ordered pair is a function. (Contributed by AV, 17-Apr-2021)

Ref Expression
Hypotheses fsnd.a ( 𝜑𝐴𝑉 )
fsnd.b ( 𝜑𝐵𝑊 )
Assertion fsnd ( 𝜑 → { ⟨ 𝐴 , 𝐵 ⟩ } : { 𝐴 } ⟶ 𝑊 )

Proof

Step Hyp Ref Expression
1 fsnd.a ( 𝜑𝐴𝑉 )
2 fsnd.b ( 𝜑𝐵𝑊 )
3 1 2 jca ( 𝜑 → ( 𝐴𝑉𝐵𝑊 ) )
4 f1sng ( ( 𝐴𝑉𝐵𝑊 ) → { ⟨ 𝐴 , 𝐵 ⟩ } : { 𝐴 } –1-1𝑊 )
5 f1f ( { ⟨ 𝐴 , 𝐵 ⟩ } : { 𝐴 } –1-1𝑊 → { ⟨ 𝐴 , 𝐵 ⟩ } : { 𝐴 } ⟶ 𝑊 )
6 3 4 5 3syl ( 𝜑 → { ⟨ 𝐴 , 𝐵 ⟩ } : { 𝐴 } ⟶ 𝑊 )