Step |
Hyp |
Ref |
Expression |
1 |
|
fsneq.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
fsneq.b |
⊢ 𝐵 = { 𝐴 } |
3 |
|
fsneq.f |
⊢ ( 𝜑 → 𝐹 Fn 𝐵 ) |
4 |
|
fsneq.g |
⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) |
5 |
|
eqfnfv |
⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐺 Fn 𝐵 ) → ( 𝐹 = 𝐺 ↔ ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
6 |
3 4 5
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 = 𝐺 ↔ ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
7 |
|
snidg |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 } ) |
8 |
1 7
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ { 𝐴 } ) |
9 |
2
|
eqcomi |
⊢ { 𝐴 } = 𝐵 |
10 |
9
|
a1i |
⊢ ( 𝜑 → { 𝐴 } = 𝐵 ) |
11 |
8 10
|
eleqtrd |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) → 𝐴 ∈ 𝐵 ) |
13 |
|
simpr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
14 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) |
15 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝐴 ) ) |
16 |
14 15
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝐴 ) = ( 𝐺 ‘ 𝐴 ) ) ) |
17 |
16
|
rspcva |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐺 ‘ 𝐴 ) ) |
18 |
12 13 17
|
syl2anc |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐺 ‘ 𝐴 ) ) |
19 |
18
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐺 ‘ 𝐴 ) ) ) |
20 |
|
simpl |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) = ( 𝐺 ‘ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐺 ‘ 𝐴 ) ) |
21 |
2
|
eleq2i |
⊢ ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ { 𝐴 } ) |
22 |
21
|
biimpi |
⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ { 𝐴 } ) |
23 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) |
24 |
22 23
|
sylib |
⊢ ( 𝑥 ∈ 𝐵 → 𝑥 = 𝐴 ) |
25 |
24
|
fveq2d |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) |
26 |
25
|
adantl |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) = ( 𝐺 ‘ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) |
27 |
24
|
fveq2d |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝐴 ) ) |
28 |
27
|
adantl |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) = ( 𝐺 ‘ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝐴 ) ) |
29 |
20 26 28
|
3eqtr4d |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) = ( 𝐺 ‘ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
30 |
29
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) = ( 𝐺 ‘ 𝐴 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
31 |
30
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) = ( 𝐺 ‘ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
32 |
31
|
ex |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) = ( 𝐺 ‘ 𝐴 ) → ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
33 |
19 32
|
impbid |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝐴 ) = ( 𝐺 ‘ 𝐴 ) ) ) |
34 |
6 33
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 = 𝐺 ↔ ( 𝐹 ‘ 𝐴 ) = ( 𝐺 ‘ 𝐴 ) ) ) |