Step |
Hyp |
Ref |
Expression |
1 |
|
fsnex.1 |
⊢ ( 𝑥 = ( 𝑓 ‘ 𝐴 ) → ( 𝜓 ↔ 𝜑 ) ) |
2 |
|
fsn2g |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑓 : { 𝐴 } ⟶ 𝐷 ↔ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝐷 ∧ 𝑓 = { 〈 𝐴 , ( 𝑓 ‘ 𝐴 ) 〉 } ) ) ) |
3 |
2
|
simprbda |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 : { 𝐴 } ⟶ 𝐷 ) → ( 𝑓 ‘ 𝐴 ) ∈ 𝐷 ) |
4 |
3
|
adantrr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝜑 ) ) → ( 𝑓 ‘ 𝐴 ) ∈ 𝐷 ) |
5 |
1
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝜑 ) ) ∧ 𝑥 = ( 𝑓 ‘ 𝐴 ) ) → ( 𝜓 ↔ 𝜑 ) ) |
6 |
|
simprr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝜑 ) ) → 𝜑 ) |
7 |
4 5 6
|
rspcedvd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝜑 ) ) → ∃ 𝑥 ∈ 𝐷 𝜓 ) |
8 |
7
|
ex |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝜑 ) → ∃ 𝑥 ∈ 𝐷 𝜓 ) ) |
9 |
8
|
exlimdv |
⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝜑 ) → ∃ 𝑥 ∈ 𝐷 𝜓 ) ) |
10 |
9
|
imp |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝜑 ) ) → ∃ 𝑥 ∈ 𝐷 𝜓 ) |
11 |
|
nfv |
⊢ Ⅎ 𝑥 𝐴 ∈ 𝑉 |
12 |
|
nfre1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ 𝐷 𝜓 |
13 |
11 12
|
nfan |
⊢ Ⅎ 𝑥 ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) |
14 |
|
f1osng |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V ) → { 〈 𝐴 , 𝑥 〉 } : { 𝐴 } –1-1-onto→ { 𝑥 } ) |
15 |
14
|
elvd |
⊢ ( 𝐴 ∈ 𝑉 → { 〈 𝐴 , 𝑥 〉 } : { 𝐴 } –1-1-onto→ { 𝑥 } ) |
16 |
15
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) → { 〈 𝐴 , 𝑥 〉 } : { 𝐴 } –1-1-onto→ { 𝑥 } ) |
17 |
|
f1of |
⊢ ( { 〈 𝐴 , 𝑥 〉 } : { 𝐴 } –1-1-onto→ { 𝑥 } → { 〈 𝐴 , 𝑥 〉 } : { 𝐴 } ⟶ { 𝑥 } ) |
18 |
16 17
|
syl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) → { 〈 𝐴 , 𝑥 〉 } : { 𝐴 } ⟶ { 𝑥 } ) |
19 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) → 𝑥 ∈ 𝐷 ) |
20 |
19
|
snssd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) → { 𝑥 } ⊆ 𝐷 ) |
21 |
18 20
|
fssd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) → { 〈 𝐴 , 𝑥 〉 } : { 𝐴 } ⟶ 𝐷 ) |
22 |
|
fvsng |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V ) → ( { 〈 𝐴 , 𝑥 〉 } ‘ 𝐴 ) = 𝑥 ) |
23 |
22
|
elvd |
⊢ ( 𝐴 ∈ 𝑉 → ( { 〈 𝐴 , 𝑥 〉 } ‘ 𝐴 ) = 𝑥 ) |
24 |
23
|
eqcomd |
⊢ ( 𝐴 ∈ 𝑉 → 𝑥 = ( { 〈 𝐴 , 𝑥 〉 } ‘ 𝐴 ) ) |
25 |
24
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) → 𝑥 = ( { 〈 𝐴 , 𝑥 〉 } ‘ 𝐴 ) ) |
26 |
|
snex |
⊢ { 〈 𝐴 , 𝑥 〉 } ∈ V |
27 |
|
feq1 |
⊢ ( 𝑓 = { 〈 𝐴 , 𝑥 〉 } → ( 𝑓 : { 𝐴 } ⟶ 𝐷 ↔ { 〈 𝐴 , 𝑥 〉 } : { 𝐴 } ⟶ 𝐷 ) ) |
28 |
|
fveq1 |
⊢ ( 𝑓 = { 〈 𝐴 , 𝑥 〉 } → ( 𝑓 ‘ 𝐴 ) = ( { 〈 𝐴 , 𝑥 〉 } ‘ 𝐴 ) ) |
29 |
28
|
eqeq2d |
⊢ ( 𝑓 = { 〈 𝐴 , 𝑥 〉 } → ( 𝑥 = ( 𝑓 ‘ 𝐴 ) ↔ 𝑥 = ( { 〈 𝐴 , 𝑥 〉 } ‘ 𝐴 ) ) ) |
30 |
27 29
|
anbi12d |
⊢ ( 𝑓 = { 〈 𝐴 , 𝑥 〉 } → ( ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( 𝑓 ‘ 𝐴 ) ) ↔ ( { 〈 𝐴 , 𝑥 〉 } : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( { 〈 𝐴 , 𝑥 〉 } ‘ 𝐴 ) ) ) ) |
31 |
26 30
|
spcev |
⊢ ( ( { 〈 𝐴 , 𝑥 〉 } : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( { 〈 𝐴 , 𝑥 〉 } ‘ 𝐴 ) ) → ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( 𝑓 ‘ 𝐴 ) ) ) |
32 |
21 25 31
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) → ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( 𝑓 ‘ 𝐴 ) ) ) |
33 |
|
simprl |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) ∧ ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( 𝑓 ‘ 𝐴 ) ) ) → 𝑓 : { 𝐴 } ⟶ 𝐷 ) |
34 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) ∧ ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( 𝑓 ‘ 𝐴 ) ) ) ∧ 𝑓 : { 𝐴 } ⟶ 𝐷 ) → 𝜓 ) |
35 |
|
simplrr |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) ∧ ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( 𝑓 ‘ 𝐴 ) ) ) ∧ 𝑓 : { 𝐴 } ⟶ 𝐷 ) → 𝑥 = ( 𝑓 ‘ 𝐴 ) ) |
36 |
35 1
|
syl |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) ∧ ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( 𝑓 ‘ 𝐴 ) ) ) ∧ 𝑓 : { 𝐴 } ⟶ 𝐷 ) → ( 𝜓 ↔ 𝜑 ) ) |
37 |
34 36
|
mpbid |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) ∧ ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( 𝑓 ‘ 𝐴 ) ) ) ∧ 𝑓 : { 𝐴 } ⟶ 𝐷 ) → 𝜑 ) |
38 |
33 37
|
mpdan |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) ∧ ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( 𝑓 ‘ 𝐴 ) ) ) → 𝜑 ) |
39 |
33 38
|
jca |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) ∧ ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( 𝑓 ‘ 𝐴 ) ) ) → ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝜑 ) ) |
40 |
39
|
ex |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) → ( ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( 𝑓 ‘ 𝐴 ) ) → ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝜑 ) ) ) |
41 |
40
|
eximdv |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) → ( ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( 𝑓 ‘ 𝐴 ) ) → ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝜑 ) ) ) |
42 |
32 41
|
mpd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) → ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝜑 ) ) |
43 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) → ∃ 𝑥 ∈ 𝐷 𝜓 ) |
44 |
13 42 43
|
r19.29af |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) → ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝜑 ) ) |
45 |
10 44
|
impbida |
⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝜑 ) ↔ ∃ 𝑥 ∈ 𝐷 𝜓 ) ) |