| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fnresdm | ⊢ ( 𝐹  Fn  𝑆  →  ( 𝐹  ↾  𝑆 )  =  𝐹 ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐹  Fn  𝑆  ∧  ¬  𝑋  ∈  𝑆 )  →  ( 𝐹  ↾  𝑆 )  =  𝐹 ) | 
						
							| 3 |  | ressnop0 | ⊢ ( ¬  𝑋  ∈  𝑆  →  ( { 〈 𝑋 ,  𝑌 〉 }  ↾  𝑆 )  =  ∅ ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝐹  Fn  𝑆  ∧  ¬  𝑋  ∈  𝑆 )  →  ( { 〈 𝑋 ,  𝑌 〉 }  ↾  𝑆 )  =  ∅ ) | 
						
							| 5 | 2 4 | uneq12d | ⊢ ( ( 𝐹  Fn  𝑆  ∧  ¬  𝑋  ∈  𝑆 )  →  ( ( 𝐹  ↾  𝑆 )  ∪  ( { 〈 𝑋 ,  𝑌 〉 }  ↾  𝑆 ) )  =  ( 𝐹  ∪  ∅ ) ) | 
						
							| 6 |  | resundir | ⊢ ( ( 𝐹  ∪  { 〈 𝑋 ,  𝑌 〉 } )  ↾  𝑆 )  =  ( ( 𝐹  ↾  𝑆 )  ∪  ( { 〈 𝑋 ,  𝑌 〉 }  ↾  𝑆 ) ) | 
						
							| 7 |  | un0 | ⊢ ( 𝐹  ∪  ∅ )  =  𝐹 | 
						
							| 8 | 7 | eqcomi | ⊢ 𝐹  =  ( 𝐹  ∪  ∅ ) | 
						
							| 9 | 5 6 8 | 3eqtr4g | ⊢ ( ( 𝐹  Fn  𝑆  ∧  ¬  𝑋  ∈  𝑆 )  →  ( ( 𝐹  ∪  { 〈 𝑋 ,  𝑌 〉 } )  ↾  𝑆 )  =  𝐹 ) |