Metamath Proof Explorer


Theorem fsplitOLD

Description: Obsolete proof of fsplit as of 31-Dec-2023 . (Contributed by NM, 17-Sep-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion fsplitOLD ( 1st ↾ I ) = ( 𝑥 ∈ V ↦ ⟨ 𝑥 , 𝑥 ⟩ )

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 vex 𝑦 ∈ V
3 1 2 brcnv ( 𝑥 ( 1st ↾ I ) 𝑦𝑦 ( 1st ↾ I ) 𝑥 )
4 1 brresi ( 𝑦 ( 1st ↾ I ) 𝑥 ↔ ( 𝑦 ∈ I ∧ 𝑦 1st 𝑥 ) )
5 19.42v ( ∃ 𝑧 ( ( 1st𝑦 ) = 𝑥𝑦 = ⟨ 𝑧 , 𝑧 ⟩ ) ↔ ( ( 1st𝑦 ) = 𝑥 ∧ ∃ 𝑧 𝑦 = ⟨ 𝑧 , 𝑧 ⟩ ) )
6 vex 𝑧 ∈ V
7 6 6 op1std ( 𝑦 = ⟨ 𝑧 , 𝑧 ⟩ → ( 1st𝑦 ) = 𝑧 )
8 7 eqeq1d ( 𝑦 = ⟨ 𝑧 , 𝑧 ⟩ → ( ( 1st𝑦 ) = 𝑥𝑧 = 𝑥 ) )
9 8 pm5.32ri ( ( ( 1st𝑦 ) = 𝑥𝑦 = ⟨ 𝑧 , 𝑧 ⟩ ) ↔ ( 𝑧 = 𝑥𝑦 = ⟨ 𝑧 , 𝑧 ⟩ ) )
10 9 exbii ( ∃ 𝑧 ( ( 1st𝑦 ) = 𝑥𝑦 = ⟨ 𝑧 , 𝑧 ⟩ ) ↔ ∃ 𝑧 ( 𝑧 = 𝑥𝑦 = ⟨ 𝑧 , 𝑧 ⟩ ) )
11 fo1st 1st : V –onto→ V
12 fofn ( 1st : V –onto→ V → 1st Fn V )
13 11 12 ax-mp 1st Fn V
14 fnbrfvb ( ( 1st Fn V ∧ 𝑦 ∈ V ) → ( ( 1st𝑦 ) = 𝑥𝑦 1st 𝑥 ) )
15 13 2 14 mp2an ( ( 1st𝑦 ) = 𝑥𝑦 1st 𝑥 )
16 dfid2 I = { ⟨ 𝑧 , 𝑧 ⟩ ∣ 𝑧 = 𝑧 }
17 16 eleq2i ( 𝑦 ∈ I ↔ 𝑦 ∈ { ⟨ 𝑧 , 𝑧 ⟩ ∣ 𝑧 = 𝑧 } )
18 nfe1 𝑧𝑧 ( 𝑦 = ⟨ 𝑧 , 𝑧 ⟩ ∧ 𝑧 = 𝑧 )
19 18 19.9 ( ∃ 𝑧𝑧 ( 𝑦 = ⟨ 𝑧 , 𝑧 ⟩ ∧ 𝑧 = 𝑧 ) ↔ ∃ 𝑧 ( 𝑦 = ⟨ 𝑧 , 𝑧 ⟩ ∧ 𝑧 = 𝑧 ) )
20 elopab ( 𝑦 ∈ { ⟨ 𝑧 , 𝑧 ⟩ ∣ 𝑧 = 𝑧 } ↔ ∃ 𝑧𝑧 ( 𝑦 = ⟨ 𝑧 , 𝑧 ⟩ ∧ 𝑧 = 𝑧 ) )
21 equid 𝑧 = 𝑧
22 21 biantru ( 𝑦 = ⟨ 𝑧 , 𝑧 ⟩ ↔ ( 𝑦 = ⟨ 𝑧 , 𝑧 ⟩ ∧ 𝑧 = 𝑧 ) )
23 22 exbii ( ∃ 𝑧 𝑦 = ⟨ 𝑧 , 𝑧 ⟩ ↔ ∃ 𝑧 ( 𝑦 = ⟨ 𝑧 , 𝑧 ⟩ ∧ 𝑧 = 𝑧 ) )
24 19 20 23 3bitr4i ( 𝑦 ∈ { ⟨ 𝑧 , 𝑧 ⟩ ∣ 𝑧 = 𝑧 } ↔ ∃ 𝑧 𝑦 = ⟨ 𝑧 , 𝑧 ⟩ )
25 17 24 bitr2i ( ∃ 𝑧 𝑦 = ⟨ 𝑧 , 𝑧 ⟩ ↔ 𝑦 ∈ I )
26 15 25 anbi12ci ( ( ( 1st𝑦 ) = 𝑥 ∧ ∃ 𝑧 𝑦 = ⟨ 𝑧 , 𝑧 ⟩ ) ↔ ( 𝑦 ∈ I ∧ 𝑦 1st 𝑥 ) )
27 5 10 26 3bitr3ri ( ( 𝑦 ∈ I ∧ 𝑦 1st 𝑥 ) ↔ ∃ 𝑧 ( 𝑧 = 𝑥𝑦 = ⟨ 𝑧 , 𝑧 ⟩ ) )
28 id ( 𝑧 = 𝑥𝑧 = 𝑥 )
29 28 28 opeq12d ( 𝑧 = 𝑥 → ⟨ 𝑧 , 𝑧 ⟩ = ⟨ 𝑥 , 𝑥 ⟩ )
30 29 eqeq2d ( 𝑧 = 𝑥 → ( 𝑦 = ⟨ 𝑧 , 𝑧 ⟩ ↔ 𝑦 = ⟨ 𝑥 , 𝑥 ⟩ ) )
31 30 equsexvw ( ∃ 𝑧 ( 𝑧 = 𝑥𝑦 = ⟨ 𝑧 , 𝑧 ⟩ ) ↔ 𝑦 = ⟨ 𝑥 , 𝑥 ⟩ )
32 27 31 bitri ( ( 𝑦 ∈ I ∧ 𝑦 1st 𝑥 ) ↔ 𝑦 = ⟨ 𝑥 , 𝑥 ⟩ )
33 4 32 bitri ( 𝑦 ( 1st ↾ I ) 𝑥𝑦 = ⟨ 𝑥 , 𝑥 ⟩ )
34 3 33 bitri ( 𝑥 ( 1st ↾ I ) 𝑦𝑦 = ⟨ 𝑥 , 𝑥 ⟩ )
35 34 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ( 1st ↾ I ) 𝑦 } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑦 = ⟨ 𝑥 , 𝑥 ⟩ }
36 relcnv Rel ( 1st ↾ I )
37 dfrel4v ( Rel ( 1st ↾ I ) ↔ ( 1st ↾ I ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ( 1st ↾ I ) 𝑦 } )
38 36 37 mpbi ( 1st ↾ I ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ( 1st ↾ I ) 𝑦 }
39 mptv ( 𝑥 ∈ V ↦ ⟨ 𝑥 , 𝑥 ⟩ ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑦 = ⟨ 𝑥 , 𝑥 ⟩ }
40 35 38 39 3eqtr4i ( 1st ↾ I ) = ( 𝑥 ∈ V ↦ ⟨ 𝑥 , 𝑥 ⟩ )