| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsplitfpar.h |
⊢ 𝐻 = ( ( ◡ ( 1st ↾ ( V × V ) ) ∘ ( 𝐹 ∘ ( 1st ↾ ( V × V ) ) ) ) ∩ ( ◡ ( 2nd ↾ ( V × V ) ) ∘ ( 𝐺 ∘ ( 2nd ↾ ( V × V ) ) ) ) ) |
| 2 |
|
fsplitfpar.s |
⊢ 𝑆 = ( ◡ ( 1st ↾ I ) ↾ 𝐴 ) |
| 3 |
|
fsplit |
⊢ ◡ ( 1st ↾ I ) = ( 𝑥 ∈ V ↦ 〈 𝑥 , 𝑥 〉 ) |
| 4 |
3
|
reseq1i |
⊢ ( ◡ ( 1st ↾ I ) ↾ 𝐴 ) = ( ( 𝑥 ∈ V ↦ 〈 𝑥 , 𝑥 〉 ) ↾ 𝐴 ) |
| 5 |
2 4
|
eqtri |
⊢ 𝑆 = ( ( 𝑥 ∈ V ↦ 〈 𝑥 , 𝑥 〉 ) ↾ 𝐴 ) |
| 6 |
5
|
fveq1i |
⊢ ( 𝑆 ‘ 𝑎 ) = ( ( ( 𝑥 ∈ V ↦ 〈 𝑥 , 𝑥 〉 ) ↾ 𝐴 ) ‘ 𝑎 ) |
| 7 |
6
|
a1i |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑆 ‘ 𝑎 ) = ( ( ( 𝑥 ∈ V ↦ 〈 𝑥 , 𝑥 〉 ) ↾ 𝐴 ) ‘ 𝑎 ) ) |
| 8 |
|
fvres |
⊢ ( 𝑎 ∈ 𝐴 → ( ( ( 𝑥 ∈ V ↦ 〈 𝑥 , 𝑥 〉 ) ↾ 𝐴 ) ‘ 𝑎 ) = ( ( 𝑥 ∈ V ↦ 〈 𝑥 , 𝑥 〉 ) ‘ 𝑎 ) ) |
| 9 |
|
eqidd |
⊢ ( 𝑎 ∈ 𝐴 → ( 𝑥 ∈ V ↦ 〈 𝑥 , 𝑥 〉 ) = ( 𝑥 ∈ V ↦ 〈 𝑥 , 𝑥 〉 ) ) |
| 10 |
|
id |
⊢ ( 𝑥 = 𝑎 → 𝑥 = 𝑎 ) |
| 11 |
10 10
|
opeq12d |
⊢ ( 𝑥 = 𝑎 → 〈 𝑥 , 𝑥 〉 = 〈 𝑎 , 𝑎 〉 ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 = 𝑎 ) → 〈 𝑥 , 𝑥 〉 = 〈 𝑎 , 𝑎 〉 ) |
| 13 |
|
elex |
⊢ ( 𝑎 ∈ 𝐴 → 𝑎 ∈ V ) |
| 14 |
|
opex |
⊢ 〈 𝑎 , 𝑎 〉 ∈ V |
| 15 |
14
|
a1i |
⊢ ( 𝑎 ∈ 𝐴 → 〈 𝑎 , 𝑎 〉 ∈ V ) |
| 16 |
9 12 13 15
|
fvmptd |
⊢ ( 𝑎 ∈ 𝐴 → ( ( 𝑥 ∈ V ↦ 〈 𝑥 , 𝑥 〉 ) ‘ 𝑎 ) = 〈 𝑎 , 𝑎 〉 ) |
| 17 |
8 16
|
eqtrd |
⊢ ( 𝑎 ∈ 𝐴 → ( ( ( 𝑥 ∈ V ↦ 〈 𝑥 , 𝑥 〉 ) ↾ 𝐴 ) ‘ 𝑎 ) = 〈 𝑎 , 𝑎 〉 ) |
| 18 |
17
|
adantl |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ V ↦ 〈 𝑥 , 𝑥 〉 ) ↾ 𝐴 ) ‘ 𝑎 ) = 〈 𝑎 , 𝑎 〉 ) |
| 19 |
7 18
|
eqtrd |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑆 ‘ 𝑎 ) = 〈 𝑎 , 𝑎 〉 ) |
| 20 |
19
|
fveq2d |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐻 ‘ ( 𝑆 ‘ 𝑎 ) ) = ( 𝐻 ‘ 〈 𝑎 , 𝑎 〉 ) ) |
| 21 |
|
df-ov |
⊢ ( 𝑎 𝐻 𝑎 ) = ( 𝐻 ‘ 〈 𝑎 , 𝑎 〉 ) |
| 22 |
1
|
fpar |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → 𝐻 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ) ) |
| 23 |
22
|
adantr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → 𝐻 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ) ) |
| 24 |
|
fveq2 |
⊢ ( 𝑥 = 𝑎 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑎 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 26 |
|
fveq2 |
⊢ ( 𝑦 = 𝑎 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑎 ) ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑎 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑎 ) ) |
| 28 |
25 27
|
opeq12d |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑎 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 = 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) |
| 29 |
28
|
adantl |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑎 ) ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 = 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) |
| 30 |
|
simpr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ 𝐴 ) |
| 31 |
|
opex |
⊢ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ∈ V |
| 32 |
31
|
a1i |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ∈ V ) |
| 33 |
23 29 30 30 32
|
ovmpod |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 𝐻 𝑎 ) = 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) |
| 34 |
21 33
|
eqtr3id |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐻 ‘ 〈 𝑎 , 𝑎 〉 ) = 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) |
| 35 |
20 34
|
eqtrd |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐻 ‘ ( 𝑆 ‘ 𝑎 ) ) = 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) |
| 36 |
|
eqid |
⊢ ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) = ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) |
| 37 |
36
|
fnmpt |
⊢ ( ∀ 𝑎 ∈ V 〈 𝑎 , 𝑎 〉 ∈ V → ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) Fn V ) |
| 38 |
14
|
a1i |
⊢ ( 𝑎 ∈ V → 〈 𝑎 , 𝑎 〉 ∈ V ) |
| 39 |
37 38
|
mprg |
⊢ ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) Fn V |
| 40 |
|
ssv |
⊢ 𝐴 ⊆ V |
| 41 |
|
fnssres |
⊢ ( ( ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) Fn V ∧ 𝐴 ⊆ V ) → ( ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) ↾ 𝐴 ) Fn 𝐴 ) |
| 42 |
39 40 41
|
mp2an |
⊢ ( ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) ↾ 𝐴 ) Fn 𝐴 |
| 43 |
|
fsplit |
⊢ ◡ ( 1st ↾ I ) = ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) |
| 44 |
43
|
reseq1i |
⊢ ( ◡ ( 1st ↾ I ) ↾ 𝐴 ) = ( ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) ↾ 𝐴 ) |
| 45 |
2 44
|
eqtri |
⊢ 𝑆 = ( ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) ↾ 𝐴 ) |
| 46 |
45
|
fneq1i |
⊢ ( 𝑆 Fn 𝐴 ↔ ( ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) ↾ 𝐴 ) Fn 𝐴 ) |
| 47 |
42 46
|
mpbir |
⊢ 𝑆 Fn 𝐴 |
| 48 |
47
|
a1i |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → 𝑆 Fn 𝐴 ) |
| 49 |
|
fvco2 |
⊢ ( ( 𝑆 Fn 𝐴 ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝐻 ∘ 𝑆 ) ‘ 𝑎 ) = ( 𝐻 ‘ ( 𝑆 ‘ 𝑎 ) ) ) |
| 50 |
48 49
|
sylan |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝐻 ∘ 𝑆 ) ‘ 𝑎 ) = ( 𝐻 ‘ ( 𝑆 ‘ 𝑎 ) ) ) |
| 51 |
|
fveq2 |
⊢ ( 𝑥 = 𝑎 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑎 ) ) |
| 52 |
24 51
|
opeq12d |
⊢ ( 𝑥 = 𝑎 → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 = 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) |
| 53 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) |
| 54 |
52 53 31
|
fvmpt |
⊢ ( 𝑎 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑎 ) = 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) |
| 55 |
54
|
adantl |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑎 ) = 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) |
| 56 |
35 50 55
|
3eqtr4d |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝐻 ∘ 𝑆 ) ‘ 𝑎 ) = ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑎 ) ) |
| 57 |
56
|
ralrimiva |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ∀ 𝑎 ∈ 𝐴 ( ( 𝐻 ∘ 𝑆 ) ‘ 𝑎 ) = ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑎 ) ) |
| 58 |
|
opex |
⊢ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ∈ V |
| 59 |
58
|
a1i |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ∈ V ) |
| 60 |
59
|
ralrimivva |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ∈ V ) |
| 61 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ) |
| 62 |
61
|
fnmpo |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ∈ V → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ) Fn ( 𝐴 × 𝐴 ) ) |
| 63 |
60 62
|
syl |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ) Fn ( 𝐴 × 𝐴 ) ) |
| 64 |
22
|
fneq1d |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝐻 Fn ( 𝐴 × 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ) Fn ( 𝐴 × 𝐴 ) ) ) |
| 65 |
63 64
|
mpbird |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → 𝐻 Fn ( 𝐴 × 𝐴 ) ) |
| 66 |
14
|
a1i |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑎 ∈ V ) → 〈 𝑎 , 𝑎 〉 ∈ V ) |
| 67 |
66
|
ralrimiva |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ∀ 𝑎 ∈ V 〈 𝑎 , 𝑎 〉 ∈ V ) |
| 68 |
67 37
|
syl |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) Fn V ) |
| 69 |
68 40 41
|
sylancl |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) ↾ 𝐴 ) Fn 𝐴 ) |
| 70 |
69 46
|
sylibr |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → 𝑆 Fn 𝐴 ) |
| 71 |
45
|
rneqi |
⊢ ran 𝑆 = ran ( ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) ↾ 𝐴 ) |
| 72 |
|
mptima |
⊢ ( ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) “ 𝐴 ) = ran ( 𝑎 ∈ ( V ∩ 𝐴 ) ↦ 〈 𝑎 , 𝑎 〉 ) |
| 73 |
|
df-ima |
⊢ ( ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) “ 𝐴 ) = ran ( ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) ↾ 𝐴 ) |
| 74 |
|
eqid |
⊢ ( 𝑎 ∈ ( V ∩ 𝐴 ) ↦ 〈 𝑎 , 𝑎 〉 ) = ( 𝑎 ∈ ( V ∩ 𝐴 ) ↦ 〈 𝑎 , 𝑎 〉 ) |
| 75 |
74
|
rnmpt |
⊢ ran ( 𝑎 ∈ ( V ∩ 𝐴 ) ↦ 〈 𝑎 , 𝑎 〉 ) = { 𝑝 ∣ ∃ 𝑎 ∈ ( V ∩ 𝐴 ) 𝑝 = 〈 𝑎 , 𝑎 〉 } |
| 76 |
72 73 75
|
3eqtr3i |
⊢ ran ( ( 𝑎 ∈ V ↦ 〈 𝑎 , 𝑎 〉 ) ↾ 𝐴 ) = { 𝑝 ∣ ∃ 𝑎 ∈ ( V ∩ 𝐴 ) 𝑝 = 〈 𝑎 , 𝑎 〉 } |
| 77 |
71 76
|
eqtri |
⊢ ran 𝑆 = { 𝑝 ∣ ∃ 𝑎 ∈ ( V ∩ 𝐴 ) 𝑝 = 〈 𝑎 , 𝑎 〉 } |
| 78 |
|
elinel2 |
⊢ ( 𝑎 ∈ ( V ∩ 𝐴 ) → 𝑎 ∈ 𝐴 ) |
| 79 |
|
simpl |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑝 = 〈 𝑎 , 𝑎 〉 ) → 𝑎 ∈ 𝐴 ) |
| 80 |
79 79
|
opelxpd |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑝 = 〈 𝑎 , 𝑎 〉 ) → 〈 𝑎 , 𝑎 〉 ∈ ( 𝐴 × 𝐴 ) ) |
| 81 |
|
eleq1 |
⊢ ( 𝑝 = 〈 𝑎 , 𝑎 〉 → ( 𝑝 ∈ ( 𝐴 × 𝐴 ) ↔ 〈 𝑎 , 𝑎 〉 ∈ ( 𝐴 × 𝐴 ) ) ) |
| 82 |
81
|
adantl |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑝 = 〈 𝑎 , 𝑎 〉 ) → ( 𝑝 ∈ ( 𝐴 × 𝐴 ) ↔ 〈 𝑎 , 𝑎 〉 ∈ ( 𝐴 × 𝐴 ) ) ) |
| 83 |
80 82
|
mpbird |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑝 = 〈 𝑎 , 𝑎 〉 ) → 𝑝 ∈ ( 𝐴 × 𝐴 ) ) |
| 84 |
83
|
ex |
⊢ ( 𝑎 ∈ 𝐴 → ( 𝑝 = 〈 𝑎 , 𝑎 〉 → 𝑝 ∈ ( 𝐴 × 𝐴 ) ) ) |
| 85 |
78 84
|
syl |
⊢ ( 𝑎 ∈ ( V ∩ 𝐴 ) → ( 𝑝 = 〈 𝑎 , 𝑎 〉 → 𝑝 ∈ ( 𝐴 × 𝐴 ) ) ) |
| 86 |
85
|
rexlimiv |
⊢ ( ∃ 𝑎 ∈ ( V ∩ 𝐴 ) 𝑝 = 〈 𝑎 , 𝑎 〉 → 𝑝 ∈ ( 𝐴 × 𝐴 ) ) |
| 87 |
86
|
abssi |
⊢ { 𝑝 ∣ ∃ 𝑎 ∈ ( V ∩ 𝐴 ) 𝑝 = 〈 𝑎 , 𝑎 〉 } ⊆ ( 𝐴 × 𝐴 ) |
| 88 |
87
|
a1i |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → { 𝑝 ∣ ∃ 𝑎 ∈ ( V ∩ 𝐴 ) 𝑝 = 〈 𝑎 , 𝑎 〉 } ⊆ ( 𝐴 × 𝐴 ) ) |
| 89 |
77 88
|
eqsstrid |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ran 𝑆 ⊆ ( 𝐴 × 𝐴 ) ) |
| 90 |
|
fnco |
⊢ ( ( 𝐻 Fn ( 𝐴 × 𝐴 ) ∧ 𝑆 Fn 𝐴 ∧ ran 𝑆 ⊆ ( 𝐴 × 𝐴 ) ) → ( 𝐻 ∘ 𝑆 ) Fn 𝐴 ) |
| 91 |
65 70 89 90
|
syl3anc |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝐻 ∘ 𝑆 ) Fn 𝐴 ) |
| 92 |
|
opex |
⊢ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ V |
| 93 |
92
|
a1i |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ V ) |
| 94 |
93
|
ralrimiva |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ∀ 𝑥 ∈ 𝐴 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ V ) |
| 95 |
53
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ V → ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) Fn 𝐴 ) |
| 96 |
94 95
|
syl |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) Fn 𝐴 ) |
| 97 |
|
eqfnfv |
⊢ ( ( ( 𝐻 ∘ 𝑆 ) Fn 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) Fn 𝐴 ) → ( ( 𝐻 ∘ 𝑆 ) = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ↔ ∀ 𝑎 ∈ 𝐴 ( ( 𝐻 ∘ 𝑆 ) ‘ 𝑎 ) = ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑎 ) ) ) |
| 98 |
91 96 97
|
syl2anc |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( ( 𝐻 ∘ 𝑆 ) = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ↔ ∀ 𝑎 ∈ 𝐴 ( ( 𝐻 ∘ 𝑆 ) ‘ 𝑎 ) = ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑎 ) ) ) |
| 99 |
57 98
|
mpbird |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝐻 ∘ 𝑆 ) = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) |