Metamath Proof Explorer
Description: Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019)
|
|
Ref |
Expression |
|
Hypotheses |
fssd.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
|
|
fssd.b |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) |
|
Assertion |
fssd |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐶 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fssd.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 2 |
|
fssd.b |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) |
| 3 |
|
fss |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → 𝐹 : 𝐴 ⟶ 𝐶 ) |
| 4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐶 ) |