Metamath Proof Explorer


Theorem fssd

Description: Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fssd.f ( 𝜑𝐹 : 𝐴𝐵 )
fssd.b ( 𝜑𝐵𝐶 )
Assertion fssd ( 𝜑𝐹 : 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 fssd.f ( 𝜑𝐹 : 𝐴𝐵 )
2 fssd.b ( 𝜑𝐵𝐶 )
3 fss ( ( 𝐹 : 𝐴𝐵𝐵𝐶 ) → 𝐹 : 𝐴𝐶 )
4 1 2 3 syl2anc ( 𝜑𝐹 : 𝐴𝐶 )