Metamath Proof Explorer


Theorem fssdmd

Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, deduction form. (Contributed by AV, 21-Aug-2022)

Ref Expression
Hypotheses fssdmd.f ( 𝜑𝐹 : 𝐴𝐵 )
fssdmd.d ( 𝜑𝐷 ⊆ dom 𝐹 )
Assertion fssdmd ( 𝜑𝐷𝐴 )

Proof

Step Hyp Ref Expression
1 fssdmd.f ( 𝜑𝐹 : 𝐴𝐵 )
2 fssdmd.d ( 𝜑𝐷 ⊆ dom 𝐹 )
3 1 fdmd ( 𝜑 → dom 𝐹 = 𝐴 )
4 2 3 sseqtrd ( 𝜑𝐷𝐴 )