Description: Restriction of a restricted function with a subclass of its domain. (Contributed by NM, 21-Jul-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | fssres2 | ⊢ ( ( ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssres | ⊢ ( ( ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝐹 ↾ 𝐴 ) ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ) | |
2 | resabs1 | ⊢ ( 𝐶 ⊆ 𝐴 → ( ( 𝐹 ↾ 𝐴 ) ↾ 𝐶 ) = ( 𝐹 ↾ 𝐶 ) ) | |
3 | 2 | feq1d | ⊢ ( 𝐶 ⊆ 𝐴 → ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ↔ ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ) ) |
4 | 3 | adantl | ⊢ ( ( ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐴 ) ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ↔ ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ) ) |
5 | 1 4 | mpbid | ⊢ ( ( ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ) |