Metamath Proof Explorer


Theorem fssres2

Description: Restriction of a restricted function with a subclass of its domain. (Contributed by NM, 21-Jul-2005)

Ref Expression
Assertion fssres2 ( ( ( 𝐹𝐴 ) : 𝐴𝐵𝐶𝐴 ) → ( 𝐹𝐶 ) : 𝐶𝐵 )

Proof

Step Hyp Ref Expression
1 fssres ( ( ( 𝐹𝐴 ) : 𝐴𝐵𝐶𝐴 ) → ( ( 𝐹𝐴 ) ↾ 𝐶 ) : 𝐶𝐵 )
2 resabs1 ( 𝐶𝐴 → ( ( 𝐹𝐴 ) ↾ 𝐶 ) = ( 𝐹𝐶 ) )
3 2 feq1d ( 𝐶𝐴 → ( ( ( 𝐹𝐴 ) ↾ 𝐶 ) : 𝐶𝐵 ↔ ( 𝐹𝐶 ) : 𝐶𝐵 ) )
4 3 adantl ( ( ( 𝐹𝐴 ) : 𝐴𝐵𝐶𝐴 ) → ( ( ( 𝐹𝐴 ) ↾ 𝐶 ) : 𝐶𝐵 ↔ ( 𝐹𝐶 ) : 𝐶𝐵 ) )
5 1 4 mpbid ( ( ( 𝐹𝐴 ) : 𝐴𝐵𝐶𝐴 ) → ( 𝐹𝐶 ) : 𝐶𝐵 )