Step |
Hyp |
Ref |
Expression |
1 |
|
fssrescdmd.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
2 |
|
fssrescdmd.c |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
3 |
|
fssrescdmd.d |
⊢ ( 𝜑 → ( 𝐹 “ 𝐶 ) ⊆ 𝐷 ) |
4 |
1
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
5 |
4 2
|
fnssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) Fn 𝐶 ) |
6 |
|
resima |
⊢ ( ( 𝐹 ↾ 𝐶 ) “ 𝐶 ) = ( 𝐹 “ 𝐶 ) |
7 |
6 3
|
eqsstrid |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐶 ) “ 𝐶 ) ⊆ 𝐷 ) |
8 |
1
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
9 |
8
|
funresd |
⊢ ( 𝜑 → Fun ( 𝐹 ↾ 𝐶 ) ) |
10 |
1
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
11 |
2 10
|
sseqtrrd |
⊢ ( 𝜑 → 𝐶 ⊆ dom 𝐹 ) |
12 |
|
ssdmres |
⊢ ( 𝐶 ⊆ dom 𝐹 ↔ dom ( 𝐹 ↾ 𝐶 ) = 𝐶 ) |
13 |
12
|
a1i |
⊢ ( 𝜑 → ( 𝐶 ⊆ dom 𝐹 ↔ dom ( 𝐹 ↾ 𝐶 ) = 𝐶 ) ) |
14 |
|
eqcom |
⊢ ( dom ( 𝐹 ↾ 𝐶 ) = 𝐶 ↔ 𝐶 = dom ( 𝐹 ↾ 𝐶 ) ) |
15 |
13 14
|
bitrdi |
⊢ ( 𝜑 → ( 𝐶 ⊆ dom 𝐹 ↔ 𝐶 = dom ( 𝐹 ↾ 𝐶 ) ) ) |
16 |
11 15
|
mpbid |
⊢ ( 𝜑 → 𝐶 = dom ( 𝐹 ↾ 𝐶 ) ) |
17 |
16
|
eqimssd |
⊢ ( 𝜑 → 𝐶 ⊆ dom ( 𝐹 ↾ 𝐶 ) ) |
18 |
|
funimass4 |
⊢ ( ( Fun ( 𝐹 ↾ 𝐶 ) ∧ 𝐶 ⊆ dom ( 𝐹 ↾ 𝐶 ) ) → ( ( ( 𝐹 ↾ 𝐶 ) “ 𝐶 ) ⊆ 𝐷 ↔ ∀ 𝑥 ∈ 𝐶 ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ∈ 𝐷 ) ) |
19 |
9 17 18
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐹 ↾ 𝐶 ) “ 𝐶 ) ⊆ 𝐷 ↔ ∀ 𝑥 ∈ 𝐶 ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ∈ 𝐷 ) ) |
20 |
7 19
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐶 ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ∈ 𝐷 ) |
21 |
|
ffnfv |
⊢ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐷 ↔ ( ( 𝐹 ↾ 𝐶 ) Fn 𝐶 ∧ ∀ 𝑥 ∈ 𝐶 ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ∈ 𝐷 ) ) |
22 |
5 20 21
|
sylanbrc |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐷 ) |