Metamath Proof Explorer


Theorem fssrescdmd

Description: Restriction of a function to a subclass of its domain as a function with domain and codomain. (Contributed by AV, 13-May-2025)

Ref Expression
Hypotheses fssrescdmd.f ( 𝜑𝐹 : 𝐴𝐵 )
fssrescdmd.c ( 𝜑𝐶𝐴 )
fssrescdmd.d ( 𝜑 → ( 𝐹𝐶 ) ⊆ 𝐷 )
Assertion fssrescdmd ( 𝜑 → ( 𝐹𝐶 ) : 𝐶𝐷 )

Proof

Step Hyp Ref Expression
1 fssrescdmd.f ( 𝜑𝐹 : 𝐴𝐵 )
2 fssrescdmd.c ( 𝜑𝐶𝐴 )
3 fssrescdmd.d ( 𝜑 → ( 𝐹𝐶 ) ⊆ 𝐷 )
4 1 ffnd ( 𝜑𝐹 Fn 𝐴 )
5 4 2 fnssresd ( 𝜑 → ( 𝐹𝐶 ) Fn 𝐶 )
6 resima ( ( 𝐹𝐶 ) “ 𝐶 ) = ( 𝐹𝐶 )
7 6 3 eqsstrid ( 𝜑 → ( ( 𝐹𝐶 ) “ 𝐶 ) ⊆ 𝐷 )
8 1 ffund ( 𝜑 → Fun 𝐹 )
9 8 funresd ( 𝜑 → Fun ( 𝐹𝐶 ) )
10 1 fdmd ( 𝜑 → dom 𝐹 = 𝐴 )
11 2 10 sseqtrrd ( 𝜑𝐶 ⊆ dom 𝐹 )
12 ssdmres ( 𝐶 ⊆ dom 𝐹 ↔ dom ( 𝐹𝐶 ) = 𝐶 )
13 12 a1i ( 𝜑 → ( 𝐶 ⊆ dom 𝐹 ↔ dom ( 𝐹𝐶 ) = 𝐶 ) )
14 eqcom ( dom ( 𝐹𝐶 ) = 𝐶𝐶 = dom ( 𝐹𝐶 ) )
15 13 14 bitrdi ( 𝜑 → ( 𝐶 ⊆ dom 𝐹𝐶 = dom ( 𝐹𝐶 ) ) )
16 11 15 mpbid ( 𝜑𝐶 = dom ( 𝐹𝐶 ) )
17 16 eqimssd ( 𝜑𝐶 ⊆ dom ( 𝐹𝐶 ) )
18 funimass4 ( ( Fun ( 𝐹𝐶 ) ∧ 𝐶 ⊆ dom ( 𝐹𝐶 ) ) → ( ( ( 𝐹𝐶 ) “ 𝐶 ) ⊆ 𝐷 ↔ ∀ 𝑥𝐶 ( ( 𝐹𝐶 ) ‘ 𝑥 ) ∈ 𝐷 ) )
19 9 17 18 syl2anc ( 𝜑 → ( ( ( 𝐹𝐶 ) “ 𝐶 ) ⊆ 𝐷 ↔ ∀ 𝑥𝐶 ( ( 𝐹𝐶 ) ‘ 𝑥 ) ∈ 𝐷 ) )
20 7 19 mpbid ( 𝜑 → ∀ 𝑥𝐶 ( ( 𝐹𝐶 ) ‘ 𝑥 ) ∈ 𝐷 )
21 ffnfv ( ( 𝐹𝐶 ) : 𝐶𝐷 ↔ ( ( 𝐹𝐶 ) Fn 𝐶 ∧ ∀ 𝑥𝐶 ( ( 𝐹𝐶 ) ‘ 𝑥 ) ∈ 𝐷 ) )
22 5 20 21 sylanbrc ( 𝜑 → ( 𝐹𝐶 ) : 𝐶𝐷 )