| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fssrescdmd.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 2 |  | fssrescdmd.c | ⊢ ( 𝜑  →  𝐶  ⊆  𝐴 ) | 
						
							| 3 |  | fssrescdmd.d | ⊢ ( 𝜑  →  ( 𝐹  “  𝐶 )  ⊆  𝐷 ) | 
						
							| 4 | 1 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝐴 ) | 
						
							| 5 | 4 2 | fnssresd | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐶 )  Fn  𝐶 ) | 
						
							| 6 |  | resima | ⊢ ( ( 𝐹  ↾  𝐶 )  “  𝐶 )  =  ( 𝐹  “  𝐶 ) | 
						
							| 7 | 6 3 | eqsstrid | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  𝐶 )  “  𝐶 )  ⊆  𝐷 ) | 
						
							| 8 | 1 | ffund | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 9 | 8 | funresd | ⊢ ( 𝜑  →  Fun  ( 𝐹  ↾  𝐶 ) ) | 
						
							| 10 | 1 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝐴 ) | 
						
							| 11 | 2 10 | sseqtrrd | ⊢ ( 𝜑  →  𝐶  ⊆  dom  𝐹 ) | 
						
							| 12 |  | ssdmres | ⊢ ( 𝐶  ⊆  dom  𝐹  ↔  dom  ( 𝐹  ↾  𝐶 )  =  𝐶 ) | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ( 𝐶  ⊆  dom  𝐹  ↔  dom  ( 𝐹  ↾  𝐶 )  =  𝐶 ) ) | 
						
							| 14 |  | eqcom | ⊢ ( dom  ( 𝐹  ↾  𝐶 )  =  𝐶  ↔  𝐶  =  dom  ( 𝐹  ↾  𝐶 ) ) | 
						
							| 15 | 13 14 | bitrdi | ⊢ ( 𝜑  →  ( 𝐶  ⊆  dom  𝐹  ↔  𝐶  =  dom  ( 𝐹  ↾  𝐶 ) ) ) | 
						
							| 16 | 11 15 | mpbid | ⊢ ( 𝜑  →  𝐶  =  dom  ( 𝐹  ↾  𝐶 ) ) | 
						
							| 17 | 16 | eqimssd | ⊢ ( 𝜑  →  𝐶  ⊆  dom  ( 𝐹  ↾  𝐶 ) ) | 
						
							| 18 |  | funimass4 | ⊢ ( ( Fun  ( 𝐹  ↾  𝐶 )  ∧  𝐶  ⊆  dom  ( 𝐹  ↾  𝐶 ) )  →  ( ( ( 𝐹  ↾  𝐶 )  “  𝐶 )  ⊆  𝐷  ↔  ∀ 𝑥  ∈  𝐶 ( ( 𝐹  ↾  𝐶 ) ‘ 𝑥 )  ∈  𝐷 ) ) | 
						
							| 19 | 9 17 18 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 𝐹  ↾  𝐶 )  “  𝐶 )  ⊆  𝐷  ↔  ∀ 𝑥  ∈  𝐶 ( ( 𝐹  ↾  𝐶 ) ‘ 𝑥 )  ∈  𝐷 ) ) | 
						
							| 20 | 7 19 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐶 ( ( 𝐹  ↾  𝐶 ) ‘ 𝑥 )  ∈  𝐷 ) | 
						
							| 21 |  | ffnfv | ⊢ ( ( 𝐹  ↾  𝐶 ) : 𝐶 ⟶ 𝐷  ↔  ( ( 𝐹  ↾  𝐶 )  Fn  𝐶  ∧  ∀ 𝑥  ∈  𝐶 ( ( 𝐹  ↾  𝐶 ) ‘ 𝑥 )  ∈  𝐷 ) ) | 
						
							| 22 | 5 20 21 | sylanbrc | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐶 ) : 𝐶 ⟶ 𝐷 ) |