Metamath Proof Explorer


Theorem fssresd

Description: Restriction of a function with a subclass of its domain, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fssresd.1 ( 𝜑𝐹 : 𝐴𝐵 )
fssresd.2 ( 𝜑𝐶𝐴 )
Assertion fssresd ( 𝜑 → ( 𝐹𝐶 ) : 𝐶𝐵 )

Proof

Step Hyp Ref Expression
1 fssresd.1 ( 𝜑𝐹 : 𝐴𝐵 )
2 fssresd.2 ( 𝜑𝐶𝐴 )
3 fssres ( ( 𝐹 : 𝐴𝐵𝐶𝐴 ) → ( 𝐹𝐶 ) : 𝐶𝐵 )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐹𝐶 ) : 𝐶𝐵 )