Metamath Proof Explorer
Description: Restriction of a function with a subclass of its domain, deduction form.
(Contributed by Glauco Siliprandi, 11-Dec-2019)
|
|
Ref |
Expression |
|
Hypotheses |
fssresd.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
|
|
fssresd.2 |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
|
Assertion |
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fssresd.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
2 |
|
fssresd.2 |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
3 |
|
fssres |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ) |