Metamath Proof Explorer


Theorem fstwrdne

Description: The first symbol of a nonempty word is element of the alphabet for the word. (Contributed by AV, 28-Sep-2018) (Proof shortened by AV, 14-Oct-2018)

Ref Expression
Assertion fstwrdne ( ( 𝑊 ∈ Word 𝑉𝑊 ≠ ∅ ) → ( 𝑊 ‘ 0 ) ∈ 𝑉 )

Proof

Step Hyp Ref Expression
1 wrdlenge1n0 ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ≠ ∅ ↔ 1 ≤ ( ♯ ‘ 𝑊 ) ) )
2 wrdsymb1 ( ( 𝑊 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ‘ 0 ) ∈ 𝑉 )
3 2 ex ( 𝑊 ∈ Word 𝑉 → ( 1 ≤ ( ♯ ‘ 𝑊 ) → ( 𝑊 ‘ 0 ) ∈ 𝑉 ) )
4 1 3 sylbid ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ≠ ∅ → ( 𝑊 ‘ 0 ) ∈ 𝑉 ) )
5 4 imp ( ( 𝑊 ∈ Word 𝑉𝑊 ≠ ∅ ) → ( 𝑊 ‘ 0 ) ∈ 𝑉 )