| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simprl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 ) )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 2 |  | nnge1 | ⊢ ( 𝑁  ∈  ℕ  →  1  ≤  𝑁 ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 ) )  →  1  ≤  𝑁 ) | 
						
							| 4 |  | breq2 | ⊢ ( ( ♯ ‘ 𝑊 )  =  𝑁  →  ( 1  ≤  ( ♯ ‘ 𝑊 )  ↔  1  ≤  𝑁 ) ) | 
						
							| 5 | 4 | ad2antll | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 ) )  →  ( 1  ≤  ( ♯ ‘ 𝑊 )  ↔  1  ≤  𝑁 ) ) | 
						
							| 6 | 3 5 | mpbird | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 ) )  →  1  ≤  ( ♯ ‘ 𝑊 ) ) | 
						
							| 7 |  | wrdsymb1 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑊 ) )  →  ( 𝑊 ‘ 0 )  ∈  𝑉 ) | 
						
							| 8 | 1 6 7 | syl2anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 ) )  →  ( 𝑊 ‘ 0 )  ∈  𝑉 ) |