Step |
Hyp |
Ref |
Expression |
1 |
|
fsum.1 |
⊢ ( 𝑘 = ( 𝐹 ‘ 𝑛 ) → 𝐵 = 𝐶 ) |
2 |
|
fsum.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
3 |
|
fsum.3 |
⊢ ( 𝜑 → 𝐹 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ) |
4 |
|
fsum.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
5 |
|
fsum.5 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑛 ) = 𝐶 ) |
6 |
|
df-sum |
⊢ Σ 𝑘 ∈ 𝐴 𝐵 = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
7 |
|
fvex |
⊢ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ∈ V |
8 |
|
eleq1w |
⊢ ( 𝑛 = 𝑗 → ( 𝑛 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴 ) ) |
9 |
|
csbeq1 |
⊢ ( 𝑛 = 𝑗 → ⦋ 𝑛 / 𝑘 ⦌ 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
10 |
8 9
|
ifbieq1d |
⊢ ( 𝑛 = 𝑗 → if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) = if ( 𝑗 ∈ 𝐴 , ⦋ 𝑗 / 𝑘 ⦌ 𝐵 , 0 ) ) |
11 |
10
|
cbvmptv |
⊢ ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) = ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , ⦋ 𝑗 / 𝑘 ⦌ 𝐵 , 0 ) ) |
12 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
13 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
14 |
13
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ |
15 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
16 |
15
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
17 |
14 16
|
rspc |
⊢ ( 𝑗 ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
18 |
12 17
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
19 |
|
fveq2 |
⊢ ( 𝑛 = 𝑖 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑖 ) ) |
20 |
19
|
csbeq1d |
⊢ ( 𝑛 = 𝑖 → ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑓 ‘ 𝑖 ) / 𝑘 ⦌ 𝐵 ) |
21 |
|
csbcow |
⊢ ⦋ ( 𝑓 ‘ 𝑖 ) / 𝑗 ⦌ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑓 ‘ 𝑖 ) / 𝑘 ⦌ 𝐵 |
22 |
20 21
|
eqtr4di |
⊢ ( 𝑛 = 𝑖 → ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑓 ‘ 𝑖 ) / 𝑗 ⦌ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
23 |
22
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) = ( 𝑖 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑖 ) / 𝑗 ⦌ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
24 |
11 18 23
|
summo |
⊢ ( 𝜑 → ∃* 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
25 |
|
f1of |
⊢ ( 𝐹 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 → 𝐹 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) |
26 |
3 25
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) |
27 |
|
ovex |
⊢ ( 1 ... 𝑀 ) ∈ V |
28 |
|
fex |
⊢ ( ( 𝐹 : ( 1 ... 𝑀 ) ⟶ 𝐴 ∧ ( 1 ... 𝑀 ) ∈ V ) → 𝐹 ∈ V ) |
29 |
26 27 28
|
sylancl |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
30 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
31 |
2 30
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
32 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... 𝑀 ) → 𝑛 ∈ ℕ ) |
33 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑛 ) ∈ V |
34 |
5 33
|
eqeltrrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → 𝐶 ∈ V ) |
35 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ 𝐶 ) = ( 𝑛 ∈ ℕ ↦ 𝐶 ) |
36 |
35
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐶 ∈ V ) → ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑛 ) = 𝐶 ) |
37 |
32 34 36
|
syl2an2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑛 ) = 𝐶 ) |
38 |
5 37
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑛 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑛 ) ) |
39 |
38
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( 1 ... 𝑀 ) ( 𝐺 ‘ 𝑛 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑛 ) ) |
40 |
|
nffvmpt1 |
⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑘 ) |
41 |
40
|
nfeq2 |
⊢ Ⅎ 𝑛 ( 𝐺 ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑘 ) |
42 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑘 ) ) |
43 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑛 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑘 ) ) |
44 |
42 43
|
eqeq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐺 ‘ 𝑛 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑛 ) ↔ ( 𝐺 ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑘 ) ) ) |
45 |
41 44
|
rspc |
⊢ ( 𝑘 ∈ ( 1 ... 𝑀 ) → ( ∀ 𝑛 ∈ ( 1 ... 𝑀 ) ( 𝐺 ‘ 𝑛 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑛 ) → ( 𝐺 ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑘 ) ) ) |
46 |
39 45
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑘 ) ) |
47 |
31 46
|
seqfveq |
⊢ ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 𝐶 ) ) ‘ 𝑀 ) ) |
48 |
3 47
|
jca |
⊢ ( 𝜑 → ( 𝐹 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 𝐶 ) ) ‘ 𝑀 ) ) ) |
49 |
|
f1oeq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ↔ 𝐹 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ) ) |
50 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) |
51 |
50
|
csbeq1d |
⊢ ( 𝑓 = 𝐹 → ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) |
52 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑛 ) ∈ V |
53 |
52 1
|
csbie |
⊢ ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = 𝐶 |
54 |
51 53
|
eqtrdi |
⊢ ( 𝑓 = 𝐹 → ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = 𝐶 ) |
55 |
54
|
mpteq2dv |
⊢ ( 𝑓 = 𝐹 → ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) = ( 𝑛 ∈ ℕ ↦ 𝐶 ) ) |
56 |
55
|
seqeq3d |
⊢ ( 𝑓 = 𝐹 → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 𝐶 ) ) ) |
57 |
56
|
fveq1d |
⊢ ( 𝑓 = 𝐹 → ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 𝐶 ) ) ‘ 𝑀 ) ) |
58 |
57
|
eqeq2d |
⊢ ( 𝑓 = 𝐹 → ( ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑀 ) ↔ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 𝐶 ) ) ‘ 𝑀 ) ) ) |
59 |
49 58
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑀 ) ) ↔ ( 𝐹 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 𝐶 ) ) ‘ 𝑀 ) ) ) ) |
60 |
29 48 59
|
spcedv |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑀 ) ) ) |
61 |
|
oveq2 |
⊢ ( 𝑚 = 𝑀 → ( 1 ... 𝑚 ) = ( 1 ... 𝑀 ) ) |
62 |
61
|
f1oeq2d |
⊢ ( 𝑚 = 𝑀 → ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ↔ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ) ) |
63 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑀 ) ) |
64 |
63
|
eqeq2d |
⊢ ( 𝑚 = 𝑀 → ( ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ↔ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑀 ) ) ) |
65 |
62 64
|
anbi12d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ↔ ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑀 ) ) ) ) |
66 |
65
|
exbidv |
⊢ ( 𝑚 = 𝑀 → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑀 ) ) ) ) |
67 |
66
|
rspcev |
⊢ ( ( 𝑀 ∈ ℕ ∧ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑀 ) ) ) → ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) |
68 |
2 60 67
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) |
69 |
68
|
olcd |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
70 |
|
breq2 |
⊢ ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) → ( seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ↔ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) ) |
71 |
70
|
anbi2d |
⊢ ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) → ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ↔ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) ) ) |
72 |
71
|
rexbidv |
⊢ ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) → ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ↔ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) ) ) |
73 |
|
eqeq1 |
⊢ ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) → ( 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ↔ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) |
74 |
73
|
anbi2d |
⊢ ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ↔ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
75 |
74
|
exbidv |
⊢ ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
76 |
75
|
rexbidv |
⊢ ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ↔ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
77 |
72 76
|
orbi12d |
⊢ ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ↔ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) ) |
78 |
77
|
moi2 |
⊢ ( ( ( ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ∈ V ∧ ∃* 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) ∧ ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) ) → 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) |
79 |
7 78
|
mpanl1 |
⊢ ( ( ∃* 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ∧ ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) ) → 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) |
80 |
79
|
ancom2s |
⊢ ( ( ∃* 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ∧ ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) ) → 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) |
81 |
80
|
expr |
⊢ ( ( ∃* 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) → 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) ) |
82 |
24 69 81
|
syl2anc |
⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) → 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) ) |
83 |
69 77
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) → ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) ) |
84 |
82 83
|
impbid |
⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ↔ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) ) |
85 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ∈ V ) → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ↔ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) ) |
86 |
85
|
iota5 |
⊢ ( ( 𝜑 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ∈ V ) → ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) |
87 |
7 86
|
mpan2 |
⊢ ( 𝜑 → ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) |
88 |
6 87
|
eqtrid |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) |