| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsum.1 |
⊢ ( 𝑘 = ( 𝐹 ‘ 𝑛 ) → 𝐵 = 𝐶 ) |
| 2 |
|
fsum.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 3 |
|
fsum.3 |
⊢ ( 𝜑 → 𝐹 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ) |
| 4 |
|
fsum.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 5 |
|
fsum.5 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑛 ) = 𝐶 ) |
| 6 |
|
df-sum |
⊢ Σ 𝑘 ∈ 𝐴 𝐵 = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
| 7 |
|
fvex |
⊢ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ∈ V |
| 8 |
|
eleq1w |
⊢ ( 𝑛 = 𝑗 → ( 𝑛 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴 ) ) |
| 9 |
|
csbeq1 |
⊢ ( 𝑛 = 𝑗 → ⦋ 𝑛 / 𝑘 ⦌ 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
| 10 |
8 9
|
ifbieq1d |
⊢ ( 𝑛 = 𝑗 → if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) = if ( 𝑗 ∈ 𝐴 , ⦋ 𝑗 / 𝑘 ⦌ 𝐵 , 0 ) ) |
| 11 |
10
|
cbvmptv |
⊢ ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) = ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , ⦋ 𝑗 / 𝑘 ⦌ 𝐵 , 0 ) ) |
| 12 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 13 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
| 14 |
13
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ |
| 15 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
| 16 |
15
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 17 |
14 16
|
rspc |
⊢ ( 𝑗 ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 18 |
12 17
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 19 |
|
fveq2 |
⊢ ( 𝑛 = 𝑖 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑖 ) ) |
| 20 |
19
|
csbeq1d |
⊢ ( 𝑛 = 𝑖 → ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑓 ‘ 𝑖 ) / 𝑘 ⦌ 𝐵 ) |
| 21 |
|
csbcow |
⊢ ⦋ ( 𝑓 ‘ 𝑖 ) / 𝑗 ⦌ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑓 ‘ 𝑖 ) / 𝑘 ⦌ 𝐵 |
| 22 |
20 21
|
eqtr4di |
⊢ ( 𝑛 = 𝑖 → ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑓 ‘ 𝑖 ) / 𝑗 ⦌ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
| 23 |
22
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) = ( 𝑖 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑖 ) / 𝑗 ⦌ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
| 24 |
11 18 23
|
summo |
⊢ ( 𝜑 → ∃* 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
| 25 |
|
f1of |
⊢ ( 𝐹 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 → 𝐹 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) |
| 26 |
3 25
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) |
| 27 |
|
ovex |
⊢ ( 1 ... 𝑀 ) ∈ V |
| 28 |
|
fex |
⊢ ( ( 𝐹 : ( 1 ... 𝑀 ) ⟶ 𝐴 ∧ ( 1 ... 𝑀 ) ∈ V ) → 𝐹 ∈ V ) |
| 29 |
26 27 28
|
sylancl |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 30 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 31 |
2 30
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
| 32 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... 𝑀 ) → 𝑛 ∈ ℕ ) |
| 33 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑛 ) ∈ V |
| 34 |
5 33
|
eqeltrrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → 𝐶 ∈ V ) |
| 35 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ 𝐶 ) = ( 𝑛 ∈ ℕ ↦ 𝐶 ) |
| 36 |
35
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐶 ∈ V ) → ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑛 ) = 𝐶 ) |
| 37 |
32 34 36
|
syl2an2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑛 ) = 𝐶 ) |
| 38 |
5 37
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑛 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑛 ) ) |
| 39 |
38
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( 1 ... 𝑀 ) ( 𝐺 ‘ 𝑛 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑛 ) ) |
| 40 |
|
nffvmpt1 |
⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑘 ) |
| 41 |
40
|
nfeq2 |
⊢ Ⅎ 𝑛 ( 𝐺 ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑘 ) |
| 42 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 43 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑛 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑘 ) ) |
| 44 |
42 43
|
eqeq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐺 ‘ 𝑛 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑛 ) ↔ ( 𝐺 ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑘 ) ) ) |
| 45 |
41 44
|
rspc |
⊢ ( 𝑘 ∈ ( 1 ... 𝑀 ) → ( ∀ 𝑛 ∈ ( 1 ... 𝑀 ) ( 𝐺 ‘ 𝑛 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑛 ) → ( 𝐺 ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑘 ) ) ) |
| 46 |
39 45
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐶 ) ‘ 𝑘 ) ) |
| 47 |
31 46
|
seqfveq |
⊢ ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 𝐶 ) ) ‘ 𝑀 ) ) |
| 48 |
3 47
|
jca |
⊢ ( 𝜑 → ( 𝐹 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 𝐶 ) ) ‘ 𝑀 ) ) ) |
| 49 |
|
f1oeq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ↔ 𝐹 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ) ) |
| 50 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 51 |
50
|
csbeq1d |
⊢ ( 𝑓 = 𝐹 → ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) |
| 52 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑛 ) ∈ V |
| 53 |
52 1
|
csbie |
⊢ ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = 𝐶 |
| 54 |
51 53
|
eqtrdi |
⊢ ( 𝑓 = 𝐹 → ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = 𝐶 ) |
| 55 |
54
|
mpteq2dv |
⊢ ( 𝑓 = 𝐹 → ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) = ( 𝑛 ∈ ℕ ↦ 𝐶 ) ) |
| 56 |
55
|
seqeq3d |
⊢ ( 𝑓 = 𝐹 → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 𝐶 ) ) ) |
| 57 |
56
|
fveq1d |
⊢ ( 𝑓 = 𝐹 → ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 𝐶 ) ) ‘ 𝑀 ) ) |
| 58 |
57
|
eqeq2d |
⊢ ( 𝑓 = 𝐹 → ( ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑀 ) ↔ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 𝐶 ) ) ‘ 𝑀 ) ) ) |
| 59 |
49 58
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑀 ) ) ↔ ( 𝐹 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ 𝐶 ) ) ‘ 𝑀 ) ) ) ) |
| 60 |
29 48 59
|
spcedv |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑀 ) ) ) |
| 61 |
|
oveq2 |
⊢ ( 𝑚 = 𝑀 → ( 1 ... 𝑚 ) = ( 1 ... 𝑀 ) ) |
| 62 |
61
|
f1oeq2d |
⊢ ( 𝑚 = 𝑀 → ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ↔ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ) ) |
| 63 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑀 ) ) |
| 64 |
63
|
eqeq2d |
⊢ ( 𝑚 = 𝑀 → ( ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ↔ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑀 ) ) ) |
| 65 |
62 64
|
anbi12d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ↔ ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑀 ) ) ) ) |
| 66 |
65
|
exbidv |
⊢ ( 𝑚 = 𝑀 → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑀 ) ) ) ) |
| 67 |
66
|
rspcev |
⊢ ( ( 𝑀 ∈ ℕ ∧ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑀 ) ) ) → ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) |
| 68 |
2 60 67
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) |
| 69 |
68
|
olcd |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
| 70 |
|
breq2 |
⊢ ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) → ( seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ↔ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) ) |
| 71 |
70
|
anbi2d |
⊢ ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) → ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ↔ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) ) ) |
| 72 |
71
|
rexbidv |
⊢ ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) → ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ↔ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) ) ) |
| 73 |
|
eqeq1 |
⊢ ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) → ( 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ↔ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) |
| 74 |
73
|
anbi2d |
⊢ ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ↔ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
| 75 |
74
|
exbidv |
⊢ ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
| 76 |
75
|
rexbidv |
⊢ ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ↔ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
| 77 |
72 76
|
orbi12d |
⊢ ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ↔ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) ) |
| 78 |
77
|
moi2 |
⊢ ( ( ( ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ∈ V ∧ ∃* 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) ∧ ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) ) → 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) |
| 79 |
7 78
|
mpanl1 |
⊢ ( ( ∃* 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ∧ ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) ) → 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) |
| 80 |
79
|
ancom2s |
⊢ ( ( ∃* 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ∧ ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) ) → 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) |
| 81 |
80
|
expr |
⊢ ( ( ∃* 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) → 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) ) |
| 82 |
24 69 81
|
syl2anc |
⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) → 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) ) |
| 83 |
69 77
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) → ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) ) |
| 84 |
82 83
|
impbid |
⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ↔ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) ) |
| 85 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ∈ V ) → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ↔ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) ) |
| 86 |
85
|
iota5 |
⊢ ( ( 𝜑 ∧ ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ∈ V ) → ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) |
| 87 |
7 86
|
mpan2 |
⊢ ( 𝜑 → ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) |
| 88 |
6 87
|
eqtrid |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 = ( seq 1 ( + , 𝐺 ) ‘ 𝑀 ) ) |