| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumge0.1 | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 2 |  | fsumge0.2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | fsumge0.3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  0  ≤  𝐵 ) | 
						
							| 4 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝐴 )  →  𝐴  ∈  Fin ) | 
						
							| 5 | 2 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  𝐴 )  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 6 | 3 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  𝐴 )  ∧  𝑘  ∈  𝐴 )  →  0  ≤  𝐵 ) | 
						
							| 7 |  | snssi | ⊢ ( 𝑚  ∈  𝐴  →  { 𝑚 }  ⊆  𝐴 ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝐴 )  →  { 𝑚 }  ⊆  𝐴 ) | 
						
							| 9 | 4 5 6 8 | fsumless | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝐴 )  →  Σ 𝑘  ∈  { 𝑚 } 𝐵  ≤  Σ 𝑘  ∈  𝐴 𝐵 ) | 
						
							| 10 | 9 | adantlr | ⊢ ( ( ( 𝜑  ∧  Σ 𝑘  ∈  𝐴 𝐵  =  0 )  ∧  𝑚  ∈  𝐴 )  →  Σ 𝑘  ∈  { 𝑚 } 𝐵  ≤  Σ 𝑘  ∈  𝐴 𝐵 ) | 
						
							| 11 |  | simpr | ⊢ ( ( ( 𝜑  ∧  Σ 𝑘  ∈  𝐴 𝐵  =  0 )  ∧  𝑚  ∈  𝐴 )  →  𝑚  ∈  𝐴 ) | 
						
							| 12 | 2 3 | jca | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) ) | 
						
							| 13 | 12 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝐴 ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  Σ 𝑘  ∈  𝐴 𝐵  =  0 )  →  ∀ 𝑘  ∈  𝐴 ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) ) | 
						
							| 15 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑚  /  𝑘 ⦌ 𝐵 | 
						
							| 16 | 15 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑚  /  𝑘 ⦌ 𝐵  ∈  ℝ | 
						
							| 17 |  | nfcv | ⊢ Ⅎ 𝑘 0 | 
						
							| 18 |  | nfcv | ⊢ Ⅎ 𝑘  ≤ | 
						
							| 19 | 17 18 15 | nfbr | ⊢ Ⅎ 𝑘 0  ≤  ⦋ 𝑚  /  𝑘 ⦌ 𝐵 | 
						
							| 20 | 16 19 | nfan | ⊢ Ⅎ 𝑘 ( ⦋ 𝑚  /  𝑘 ⦌ 𝐵  ∈  ℝ  ∧  0  ≤  ⦋ 𝑚  /  𝑘 ⦌ 𝐵 ) | 
						
							| 21 |  | csbeq1a | ⊢ ( 𝑘  =  𝑚  →  𝐵  =  ⦋ 𝑚  /  𝑘 ⦌ 𝐵 ) | 
						
							| 22 | 21 | eleq1d | ⊢ ( 𝑘  =  𝑚  →  ( 𝐵  ∈  ℝ  ↔  ⦋ 𝑚  /  𝑘 ⦌ 𝐵  ∈  ℝ ) ) | 
						
							| 23 | 21 | breq2d | ⊢ ( 𝑘  =  𝑚  →  ( 0  ≤  𝐵  ↔  0  ≤  ⦋ 𝑚  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 24 | 22 23 | anbi12d | ⊢ ( 𝑘  =  𝑚  →  ( ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 )  ↔  ( ⦋ 𝑚  /  𝑘 ⦌ 𝐵  ∈  ℝ  ∧  0  ≤  ⦋ 𝑚  /  𝑘 ⦌ 𝐵 ) ) ) | 
						
							| 25 | 20 24 | rspc | ⊢ ( 𝑚  ∈  𝐴  →  ( ∀ 𝑘  ∈  𝐴 ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 )  →  ( ⦋ 𝑚  /  𝑘 ⦌ 𝐵  ∈  ℝ  ∧  0  ≤  ⦋ 𝑚  /  𝑘 ⦌ 𝐵 ) ) ) | 
						
							| 26 | 14 25 | mpan9 | ⊢ ( ( ( 𝜑  ∧  Σ 𝑘  ∈  𝐴 𝐵  =  0 )  ∧  𝑚  ∈  𝐴 )  →  ( ⦋ 𝑚  /  𝑘 ⦌ 𝐵  ∈  ℝ  ∧  0  ≤  ⦋ 𝑚  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 27 | 26 | simpld | ⊢ ( ( ( 𝜑  ∧  Σ 𝑘  ∈  𝐴 𝐵  =  0 )  ∧  𝑚  ∈  𝐴 )  →  ⦋ 𝑚  /  𝑘 ⦌ 𝐵  ∈  ℝ ) | 
						
							| 28 | 27 | recnd | ⊢ ( ( ( 𝜑  ∧  Σ 𝑘  ∈  𝐴 𝐵  =  0 )  ∧  𝑚  ∈  𝐴 )  →  ⦋ 𝑚  /  𝑘 ⦌ 𝐵  ∈  ℂ ) | 
						
							| 29 |  | sumsns | ⊢ ( ( 𝑚  ∈  𝐴  ∧  ⦋ 𝑚  /  𝑘 ⦌ 𝐵  ∈  ℂ )  →  Σ 𝑘  ∈  { 𝑚 } 𝐵  =  ⦋ 𝑚  /  𝑘 ⦌ 𝐵 ) | 
						
							| 30 | 11 28 29 | syl2anc | ⊢ ( ( ( 𝜑  ∧  Σ 𝑘  ∈  𝐴 𝐵  =  0 )  ∧  𝑚  ∈  𝐴 )  →  Σ 𝑘  ∈  { 𝑚 } 𝐵  =  ⦋ 𝑚  /  𝑘 ⦌ 𝐵 ) | 
						
							| 31 |  | simplr | ⊢ ( ( ( 𝜑  ∧  Σ 𝑘  ∈  𝐴 𝐵  =  0 )  ∧  𝑚  ∈  𝐴 )  →  Σ 𝑘  ∈  𝐴 𝐵  =  0 ) | 
						
							| 32 | 10 30 31 | 3brtr3d | ⊢ ( ( ( 𝜑  ∧  Σ 𝑘  ∈  𝐴 𝐵  =  0 )  ∧  𝑚  ∈  𝐴 )  →  ⦋ 𝑚  /  𝑘 ⦌ 𝐵  ≤  0 ) | 
						
							| 33 | 26 | simprd | ⊢ ( ( ( 𝜑  ∧  Σ 𝑘  ∈  𝐴 𝐵  =  0 )  ∧  𝑚  ∈  𝐴 )  →  0  ≤  ⦋ 𝑚  /  𝑘 ⦌ 𝐵 ) | 
						
							| 34 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 35 |  | letri3 | ⊢ ( ( ⦋ 𝑚  /  𝑘 ⦌ 𝐵  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( ⦋ 𝑚  /  𝑘 ⦌ 𝐵  =  0  ↔  ( ⦋ 𝑚  /  𝑘 ⦌ 𝐵  ≤  0  ∧  0  ≤  ⦋ 𝑚  /  𝑘 ⦌ 𝐵 ) ) ) | 
						
							| 36 | 27 34 35 | sylancl | ⊢ ( ( ( 𝜑  ∧  Σ 𝑘  ∈  𝐴 𝐵  =  0 )  ∧  𝑚  ∈  𝐴 )  →  ( ⦋ 𝑚  /  𝑘 ⦌ 𝐵  =  0  ↔  ( ⦋ 𝑚  /  𝑘 ⦌ 𝐵  ≤  0  ∧  0  ≤  ⦋ 𝑚  /  𝑘 ⦌ 𝐵 ) ) ) | 
						
							| 37 | 32 33 36 | mpbir2and | ⊢ ( ( ( 𝜑  ∧  Σ 𝑘  ∈  𝐴 𝐵  =  0 )  ∧  𝑚  ∈  𝐴 )  →  ⦋ 𝑚  /  𝑘 ⦌ 𝐵  =  0 ) | 
						
							| 38 | 37 | ralrimiva | ⊢ ( ( 𝜑  ∧  Σ 𝑘  ∈  𝐴 𝐵  =  0 )  →  ∀ 𝑚  ∈  𝐴 ⦋ 𝑚  /  𝑘 ⦌ 𝐵  =  0 ) | 
						
							| 39 |  | nfv | ⊢ Ⅎ 𝑚 𝐵  =  0 | 
						
							| 40 | 15 | nfeq1 | ⊢ Ⅎ 𝑘 ⦋ 𝑚  /  𝑘 ⦌ 𝐵  =  0 | 
						
							| 41 | 21 | eqeq1d | ⊢ ( 𝑘  =  𝑚  →  ( 𝐵  =  0  ↔  ⦋ 𝑚  /  𝑘 ⦌ 𝐵  =  0 ) ) | 
						
							| 42 | 39 40 41 | cbvralw | ⊢ ( ∀ 𝑘  ∈  𝐴 𝐵  =  0  ↔  ∀ 𝑚  ∈  𝐴 ⦋ 𝑚  /  𝑘 ⦌ 𝐵  =  0 ) | 
						
							| 43 | 38 42 | sylibr | ⊢ ( ( 𝜑  ∧  Σ 𝑘  ∈  𝐴 𝐵  =  0 )  →  ∀ 𝑘  ∈  𝐴 𝐵  =  0 ) | 
						
							| 44 | 43 | ex | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  𝐴 𝐵  =  0  →  ∀ 𝑘  ∈  𝐴 𝐵  =  0 ) ) | 
						
							| 45 |  | sumz | ⊢ ( ( 𝐴  ⊆  ( ℤ≥ ‘ 0 )  ∨  𝐴  ∈  Fin )  →  Σ 𝑘  ∈  𝐴 0  =  0 ) | 
						
							| 46 | 45 | olcs | ⊢ ( 𝐴  ∈  Fin  →  Σ 𝑘  ∈  𝐴 0  =  0 ) | 
						
							| 47 |  | sumeq2 | ⊢ ( ∀ 𝑘  ∈  𝐴 𝐵  =  0  →  Σ 𝑘  ∈  𝐴 𝐵  =  Σ 𝑘  ∈  𝐴 0 ) | 
						
							| 48 | 47 | eqeq1d | ⊢ ( ∀ 𝑘  ∈  𝐴 𝐵  =  0  →  ( Σ 𝑘  ∈  𝐴 𝐵  =  0  ↔  Σ 𝑘  ∈  𝐴 0  =  0 ) ) | 
						
							| 49 | 46 48 | syl5ibrcom | ⊢ ( 𝐴  ∈  Fin  →  ( ∀ 𝑘  ∈  𝐴 𝐵  =  0  →  Σ 𝑘  ∈  𝐴 𝐵  =  0 ) ) | 
						
							| 50 | 1 49 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑘  ∈  𝐴 𝐵  =  0  →  Σ 𝑘  ∈  𝐴 𝐵  =  0 ) ) | 
						
							| 51 | 44 50 | impbid | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  𝐴 𝐵  =  0  ↔  ∀ 𝑘  ∈  𝐴 𝐵  =  0 ) ) |