Metamath Proof Explorer


Theorem fsum0diag2

Description: Two ways to express "the sum of A ( j , k ) over the triangular region 0 <_ j , 0 <_ k , j + k <_ N ". (Contributed by Mario Carneiro, 21-Jul-2014)

Ref Expression
Hypotheses fsum0diag2.1 ( 𝑥 = 𝑘𝐵 = 𝐴 )
fsum0diag2.2 ( 𝑥 = ( 𝑘𝑗 ) → 𝐵 = 𝐶 )
fsum0diag2.3 ( ( 𝜑 ∧ ( 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁𝑗 ) ) ) ) → 𝐴 ∈ ℂ )
Assertion fsum0diag2 ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑁 ) Σ 𝑘 ∈ ( 0 ... ( 𝑁𝑗 ) ) 𝐴 = Σ 𝑘 ∈ ( 0 ... 𝑁 ) Σ 𝑗 ∈ ( 0 ... 𝑘 ) 𝐶 )

Proof

Step Hyp Ref Expression
1 fsum0diag2.1 ( 𝑥 = 𝑘𝐵 = 𝐴 )
2 fsum0diag2.2 ( 𝑥 = ( 𝑘𝑗 ) → 𝐵 = 𝐶 )
3 fsum0diag2.3 ( ( 𝜑 ∧ ( 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁𝑗 ) ) ) ) → 𝐴 ∈ ℂ )
4 fznn0sub2 ( 𝑛 ∈ ( 0 ... ( 𝑁𝑗 ) ) → ( ( 𝑁𝑗 ) − 𝑛 ) ∈ ( 0 ... ( 𝑁𝑗 ) ) )
5 4 ad2antll ( ( 𝜑 ∧ ( 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑁𝑗 ) ) ) ) → ( ( 𝑁𝑗 ) − 𝑛 ) ∈ ( 0 ... ( 𝑁𝑗 ) ) )
6 3 expr ( ( 𝜑𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝑘 ∈ ( 0 ... ( 𝑁𝑗 ) ) → 𝐴 ∈ ℂ ) )
7 6 ralrimiv ( ( 𝜑𝑗 ∈ ( 0 ... 𝑁 ) ) → ∀ 𝑘 ∈ ( 0 ... ( 𝑁𝑗 ) ) 𝐴 ∈ ℂ )
8 1 eleq1d ( 𝑥 = 𝑘 → ( 𝐵 ∈ ℂ ↔ 𝐴 ∈ ℂ ) )
9 8 cbvralvw ( ∀ 𝑥 ∈ ( 0 ... ( 𝑁𝑗 ) ) 𝐵 ∈ ℂ ↔ ∀ 𝑘 ∈ ( 0 ... ( 𝑁𝑗 ) ) 𝐴 ∈ ℂ )
10 7 9 sylibr ( ( 𝜑𝑗 ∈ ( 0 ... 𝑁 ) ) → ∀ 𝑥 ∈ ( 0 ... ( 𝑁𝑗 ) ) 𝐵 ∈ ℂ )
11 10 adantrr ( ( 𝜑 ∧ ( 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑁𝑗 ) ) ) ) → ∀ 𝑥 ∈ ( 0 ... ( 𝑁𝑗 ) ) 𝐵 ∈ ℂ )
12 nfcsb1v 𝑥 ( ( 𝑁𝑗 ) − 𝑛 ) / 𝑥 𝐵
13 12 nfel1 𝑥 ( ( 𝑁𝑗 ) − 𝑛 ) / 𝑥 𝐵 ∈ ℂ
14 csbeq1a ( 𝑥 = ( ( 𝑁𝑗 ) − 𝑛 ) → 𝐵 = ( ( 𝑁𝑗 ) − 𝑛 ) / 𝑥 𝐵 )
15 14 eleq1d ( 𝑥 = ( ( 𝑁𝑗 ) − 𝑛 ) → ( 𝐵 ∈ ℂ ↔ ( ( 𝑁𝑗 ) − 𝑛 ) / 𝑥 𝐵 ∈ ℂ ) )
16 13 15 rspc ( ( ( 𝑁𝑗 ) − 𝑛 ) ∈ ( 0 ... ( 𝑁𝑗 ) ) → ( ∀ 𝑥 ∈ ( 0 ... ( 𝑁𝑗 ) ) 𝐵 ∈ ℂ → ( ( 𝑁𝑗 ) − 𝑛 ) / 𝑥 𝐵 ∈ ℂ ) )
17 5 11 16 sylc ( ( 𝜑 ∧ ( 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑁𝑗 ) ) ) ) → ( ( 𝑁𝑗 ) − 𝑛 ) / 𝑥 𝐵 ∈ ℂ )
18 17 fsum0diag ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑁 ) Σ 𝑛 ∈ ( 0 ... ( 𝑁𝑗 ) ) ( ( 𝑁𝑗 ) − 𝑛 ) / 𝑥 𝐵 = Σ 𝑛 ∈ ( 0 ... 𝑁 ) Σ 𝑗 ∈ ( 0 ... ( 𝑁𝑛 ) ) ( ( 𝑁𝑗 ) − 𝑛 ) / 𝑥 𝐵 )
19 nfcsb1v 𝑥 𝑘 / 𝑥 𝐵
20 19 nfel1 𝑥 𝑘 / 𝑥 𝐵 ∈ ℂ
21 csbeq1a ( 𝑥 = 𝑘𝐵 = 𝑘 / 𝑥 𝐵 )
22 21 eleq1d ( 𝑥 = 𝑘 → ( 𝐵 ∈ ℂ ↔ 𝑘 / 𝑥 𝐵 ∈ ℂ ) )
23 20 22 rspc ( 𝑘 ∈ ( 0 ... ( 𝑁𝑗 ) ) → ( ∀ 𝑥 ∈ ( 0 ... ( 𝑁𝑗 ) ) 𝐵 ∈ ℂ → 𝑘 / 𝑥 𝐵 ∈ ℂ ) )
24 10 23 mpan9 ( ( ( 𝜑𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁𝑗 ) ) ) → 𝑘 / 𝑥 𝐵 ∈ ℂ )
25 csbeq1 ( 𝑘 = ( ( 0 + ( 𝑁𝑗 ) ) − 𝑛 ) → 𝑘 / 𝑥 𝐵 = ( ( 0 + ( 𝑁𝑗 ) ) − 𝑛 ) / 𝑥 𝐵 )
26 24 25 fsumrev2 ( ( 𝜑𝑗 ∈ ( 0 ... 𝑁 ) ) → Σ 𝑘 ∈ ( 0 ... ( 𝑁𝑗 ) ) 𝑘 / 𝑥 𝐵 = Σ 𝑛 ∈ ( 0 ... ( 𝑁𝑗 ) ) ( ( 0 + ( 𝑁𝑗 ) ) − 𝑛 ) / 𝑥 𝐵 )
27 elfz3nn0 ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ℕ0 )
28 27 ad2antlr ( ( ( 𝜑𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑛 ∈ ( 0 ... ( 𝑁𝑗 ) ) ) → 𝑁 ∈ ℕ0 )
29 elfzelz ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 ∈ ℤ )
30 29 ad2antlr ( ( ( 𝜑𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑛 ∈ ( 0 ... ( 𝑁𝑗 ) ) ) → 𝑗 ∈ ℤ )
31 nn0cn ( 𝑁 ∈ ℕ0𝑁 ∈ ℂ )
32 zcn ( 𝑗 ∈ ℤ → 𝑗 ∈ ℂ )
33 subcl ( ( 𝑁 ∈ ℂ ∧ 𝑗 ∈ ℂ ) → ( 𝑁𝑗 ) ∈ ℂ )
34 31 32 33 syl2an ( ( 𝑁 ∈ ℕ0𝑗 ∈ ℤ ) → ( 𝑁𝑗 ) ∈ ℂ )
35 28 30 34 syl2anc ( ( ( 𝜑𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑛 ∈ ( 0 ... ( 𝑁𝑗 ) ) ) → ( 𝑁𝑗 ) ∈ ℂ )
36 addid2 ( ( 𝑁𝑗 ) ∈ ℂ → ( 0 + ( 𝑁𝑗 ) ) = ( 𝑁𝑗 ) )
37 35 36 syl ( ( ( 𝜑𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑛 ∈ ( 0 ... ( 𝑁𝑗 ) ) ) → ( 0 + ( 𝑁𝑗 ) ) = ( 𝑁𝑗 ) )
38 37 oveq1d ( ( ( 𝜑𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑛 ∈ ( 0 ... ( 𝑁𝑗 ) ) ) → ( ( 0 + ( 𝑁𝑗 ) ) − 𝑛 ) = ( ( 𝑁𝑗 ) − 𝑛 ) )
39 38 csbeq1d ( ( ( 𝜑𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑛 ∈ ( 0 ... ( 𝑁𝑗 ) ) ) → ( ( 0 + ( 𝑁𝑗 ) ) − 𝑛 ) / 𝑥 𝐵 = ( ( 𝑁𝑗 ) − 𝑛 ) / 𝑥 𝐵 )
40 39 sumeq2dv ( ( 𝜑𝑗 ∈ ( 0 ... 𝑁 ) ) → Σ 𝑛 ∈ ( 0 ... ( 𝑁𝑗 ) ) ( ( 0 + ( 𝑁𝑗 ) ) − 𝑛 ) / 𝑥 𝐵 = Σ 𝑛 ∈ ( 0 ... ( 𝑁𝑗 ) ) ( ( 𝑁𝑗 ) − 𝑛 ) / 𝑥 𝐵 )
41 26 40 eqtrd ( ( 𝜑𝑗 ∈ ( 0 ... 𝑁 ) ) → Σ 𝑘 ∈ ( 0 ... ( 𝑁𝑗 ) ) 𝑘 / 𝑥 𝐵 = Σ 𝑛 ∈ ( 0 ... ( 𝑁𝑗 ) ) ( ( 𝑁𝑗 ) − 𝑛 ) / 𝑥 𝐵 )
42 41 sumeq2dv ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑁 ) Σ 𝑘 ∈ ( 0 ... ( 𝑁𝑗 ) ) 𝑘 / 𝑥 𝐵 = Σ 𝑗 ∈ ( 0 ... 𝑁 ) Σ 𝑛 ∈ ( 0 ... ( 𝑁𝑗 ) ) ( ( 𝑁𝑗 ) − 𝑛 ) / 𝑥 𝐵 )
43 elfz3nn0 ( 𝑛 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ℕ0 )
44 43 adantl ( ( 𝜑𝑛 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ∈ ℕ0 )
45 addid2 ( 𝑁 ∈ ℂ → ( 0 + 𝑁 ) = 𝑁 )
46 44 31 45 3syl ( ( 𝜑𝑛 ∈ ( 0 ... 𝑁 ) ) → ( 0 + 𝑁 ) = 𝑁 )
47 46 oveq1d ( ( 𝜑𝑛 ∈ ( 0 ... 𝑁 ) ) → ( ( 0 + 𝑁 ) − 𝑛 ) = ( 𝑁𝑛 ) )
48 47 oveq2d ( ( 𝜑𝑛 ∈ ( 0 ... 𝑁 ) ) → ( 0 ... ( ( 0 + 𝑁 ) − 𝑛 ) ) = ( 0 ... ( 𝑁𝑛 ) ) )
49 47 oveq1d ( ( 𝜑𝑛 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 0 + 𝑁 ) − 𝑛 ) − 𝑗 ) = ( ( 𝑁𝑛 ) − 𝑗 ) )
50 49 adantr ( ( ( 𝜑𝑛 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁𝑛 ) ) ) → ( ( ( 0 + 𝑁 ) − 𝑛 ) − 𝑗 ) = ( ( 𝑁𝑛 ) − 𝑗 ) )
51 43 ad2antlr ( ( ( 𝜑𝑛 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁𝑛 ) ) ) → 𝑁 ∈ ℕ0 )
52 elfzelz ( 𝑛 ∈ ( 0 ... 𝑁 ) → 𝑛 ∈ ℤ )
53 52 ad2antlr ( ( ( 𝜑𝑛 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁𝑛 ) ) ) → 𝑛 ∈ ℤ )
54 elfzelz ( 𝑗 ∈ ( 0 ... ( 𝑁𝑛 ) ) → 𝑗 ∈ ℤ )
55 54 adantl ( ( ( 𝜑𝑛 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁𝑛 ) ) ) → 𝑗 ∈ ℤ )
56 zcn ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ )
57 sub32 ( ( 𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑗 ∈ ℂ ) → ( ( 𝑁𝑛 ) − 𝑗 ) = ( ( 𝑁𝑗 ) − 𝑛 ) )
58 31 56 32 57 syl3an ( ( 𝑁 ∈ ℕ0𝑛 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( ( 𝑁𝑛 ) − 𝑗 ) = ( ( 𝑁𝑗 ) − 𝑛 ) )
59 51 53 55 58 syl3anc ( ( ( 𝜑𝑛 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁𝑛 ) ) ) → ( ( 𝑁𝑛 ) − 𝑗 ) = ( ( 𝑁𝑗 ) − 𝑛 ) )
60 50 59 eqtrd ( ( ( 𝜑𝑛 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁𝑛 ) ) ) → ( ( ( 0 + 𝑁 ) − 𝑛 ) − 𝑗 ) = ( ( 𝑁𝑗 ) − 𝑛 ) )
61 60 csbeq1d ( ( ( 𝜑𝑛 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁𝑛 ) ) ) → ( ( ( 0 + 𝑁 ) − 𝑛 ) − 𝑗 ) / 𝑥 𝐵 = ( ( 𝑁𝑗 ) − 𝑛 ) / 𝑥 𝐵 )
62 48 61 sumeq12rdv ( ( 𝜑𝑛 ∈ ( 0 ... 𝑁 ) ) → Σ 𝑗 ∈ ( 0 ... ( ( 0 + 𝑁 ) − 𝑛 ) ) ( ( ( 0 + 𝑁 ) − 𝑛 ) − 𝑗 ) / 𝑥 𝐵 = Σ 𝑗 ∈ ( 0 ... ( 𝑁𝑛 ) ) ( ( 𝑁𝑗 ) − 𝑛 ) / 𝑥 𝐵 )
63 62 sumeq2dv ( 𝜑 → Σ 𝑛 ∈ ( 0 ... 𝑁 ) Σ 𝑗 ∈ ( 0 ... ( ( 0 + 𝑁 ) − 𝑛 ) ) ( ( ( 0 + 𝑁 ) − 𝑛 ) − 𝑗 ) / 𝑥 𝐵 = Σ 𝑛 ∈ ( 0 ... 𝑁 ) Σ 𝑗 ∈ ( 0 ... ( 𝑁𝑛 ) ) ( ( 𝑁𝑗 ) − 𝑛 ) / 𝑥 𝐵 )
64 18 42 63 3eqtr4d ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑁 ) Σ 𝑘 ∈ ( 0 ... ( 𝑁𝑗 ) ) 𝑘 / 𝑥 𝐵 = Σ 𝑛 ∈ ( 0 ... 𝑁 ) Σ 𝑗 ∈ ( 0 ... ( ( 0 + 𝑁 ) − 𝑛 ) ) ( ( ( 0 + 𝑁 ) − 𝑛 ) − 𝑗 ) / 𝑥 𝐵 )
65 fzfid ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 0 ... 𝑘 ) ∈ Fin )
66 elfzuz3 ( 𝑗 ∈ ( 0 ... 𝑘 ) → 𝑘 ∈ ( ℤ𝑗 ) )
67 66 adantl ( ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → 𝑘 ∈ ( ℤ𝑗 ) )
68 elfzuz3 ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ( ℤ𝑘 ) )
69 68 adantl ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ∈ ( ℤ𝑘 ) )
70 69 adantr ( ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → 𝑁 ∈ ( ℤ𝑘 ) )
71 elfzuzb ( 𝑘 ∈ ( 𝑗 ... 𝑁 ) ↔ ( 𝑘 ∈ ( ℤ𝑗 ) ∧ 𝑁 ∈ ( ℤ𝑘 ) ) )
72 67 70 71 sylanbrc ( ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → 𝑘 ∈ ( 𝑗 ... 𝑁 ) )
73 elfzelz ( 𝑗 ∈ ( 0 ... 𝑘 ) → 𝑗 ∈ ℤ )
74 73 adantl ( ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → 𝑗 ∈ ℤ )
75 elfzel2 ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ℤ )
76 75 ad2antlr ( ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → 𝑁 ∈ ℤ )
77 elfzelz ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℤ )
78 77 ad2antlr ( ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → 𝑘 ∈ ℤ )
79 fzsubel ( ( ( 𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝑘 ∈ ( 𝑗 ... 𝑁 ) ↔ ( 𝑘𝑗 ) ∈ ( ( 𝑗𝑗 ) ... ( 𝑁𝑗 ) ) ) )
80 74 76 78 74 79 syl22anc ( ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘 ∈ ( 𝑗 ... 𝑁 ) ↔ ( 𝑘𝑗 ) ∈ ( ( 𝑗𝑗 ) ... ( 𝑁𝑗 ) ) ) )
81 72 80 mpbid ( ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘𝑗 ) ∈ ( ( 𝑗𝑗 ) ... ( 𝑁𝑗 ) ) )
82 subid ( 𝑗 ∈ ℂ → ( 𝑗𝑗 ) = 0 )
83 74 32 82 3syl ( ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝑗𝑗 ) = 0 )
84 83 oveq1d ( ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝑗𝑗 ) ... ( 𝑁𝑗 ) ) = ( 0 ... ( 𝑁𝑗 ) ) )
85 81 84 eleqtrd ( ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘𝑗 ) ∈ ( 0 ... ( 𝑁𝑗 ) ) )
86 simpll ( ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → 𝜑 )
87 fzss2 ( 𝑁 ∈ ( ℤ𝑘 ) → ( 0 ... 𝑘 ) ⊆ ( 0 ... 𝑁 ) )
88 69 87 syl ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 0 ... 𝑘 ) ⊆ ( 0 ... 𝑁 ) )
89 88 sselda ( ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → 𝑗 ∈ ( 0 ... 𝑁 ) )
90 86 89 10 syl2anc ( ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ∀ 𝑥 ∈ ( 0 ... ( 𝑁𝑗 ) ) 𝐵 ∈ ℂ )
91 nfcsb1v 𝑥 ( 𝑘𝑗 ) / 𝑥 𝐵
92 91 nfel1 𝑥 ( 𝑘𝑗 ) / 𝑥 𝐵 ∈ ℂ
93 csbeq1a ( 𝑥 = ( 𝑘𝑗 ) → 𝐵 = ( 𝑘𝑗 ) / 𝑥 𝐵 )
94 93 eleq1d ( 𝑥 = ( 𝑘𝑗 ) → ( 𝐵 ∈ ℂ ↔ ( 𝑘𝑗 ) / 𝑥 𝐵 ∈ ℂ ) )
95 92 94 rspc ( ( 𝑘𝑗 ) ∈ ( 0 ... ( 𝑁𝑗 ) ) → ( ∀ 𝑥 ∈ ( 0 ... ( 𝑁𝑗 ) ) 𝐵 ∈ ℂ → ( 𝑘𝑗 ) / 𝑥 𝐵 ∈ ℂ ) )
96 85 90 95 sylc ( ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘𝑗 ) / 𝑥 𝐵 ∈ ℂ )
97 65 96 fsumcl ( ( 𝜑𝑘 ∈ ( 0 ... 𝑁 ) ) → Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝑘𝑗 ) / 𝑥 𝐵 ∈ ℂ )
98 oveq2 ( 𝑘 = ( ( 0 + 𝑁 ) − 𝑛 ) → ( 0 ... 𝑘 ) = ( 0 ... ( ( 0 + 𝑁 ) − 𝑛 ) ) )
99 oveq1 ( 𝑘 = ( ( 0 + 𝑁 ) − 𝑛 ) → ( 𝑘𝑗 ) = ( ( ( 0 + 𝑁 ) − 𝑛 ) − 𝑗 ) )
100 99 csbeq1d ( 𝑘 = ( ( 0 + 𝑁 ) − 𝑛 ) → ( 𝑘𝑗 ) / 𝑥 𝐵 = ( ( ( 0 + 𝑁 ) − 𝑛 ) − 𝑗 ) / 𝑥 𝐵 )
101 100 adantr ( ( 𝑘 = ( ( 0 + 𝑁 ) − 𝑛 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘𝑗 ) / 𝑥 𝐵 = ( ( ( 0 + 𝑁 ) − 𝑛 ) − 𝑗 ) / 𝑥 𝐵 )
102 98 101 sumeq12dv ( 𝑘 = ( ( 0 + 𝑁 ) − 𝑛 ) → Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝑘𝑗 ) / 𝑥 𝐵 = Σ 𝑗 ∈ ( 0 ... ( ( 0 + 𝑁 ) − 𝑛 ) ) ( ( ( 0 + 𝑁 ) − 𝑛 ) − 𝑗 ) / 𝑥 𝐵 )
103 97 102 fsumrev2 ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 𝑁 ) Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝑘𝑗 ) / 𝑥 𝐵 = Σ 𝑛 ∈ ( 0 ... 𝑁 ) Σ 𝑗 ∈ ( 0 ... ( ( 0 + 𝑁 ) − 𝑛 ) ) ( ( ( 0 + 𝑁 ) − 𝑛 ) − 𝑗 ) / 𝑥 𝐵 )
104 64 103 eqtr4d ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑁 ) Σ 𝑘 ∈ ( 0 ... ( 𝑁𝑗 ) ) 𝑘 / 𝑥 𝐵 = Σ 𝑘 ∈ ( 0 ... 𝑁 ) Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝑘𝑗 ) / 𝑥 𝐵 )
105 vex 𝑘 ∈ V
106 105 1 csbie 𝑘 / 𝑥 𝐵 = 𝐴
107 106 a1i ( ( 𝑗 ∈ ( 0 ... 𝑁 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁𝑗 ) ) ) → 𝑘 / 𝑥 𝐵 = 𝐴 )
108 107 sumeq2dv ( 𝑗 ∈ ( 0 ... 𝑁 ) → Σ 𝑘 ∈ ( 0 ... ( 𝑁𝑗 ) ) 𝑘 / 𝑥 𝐵 = Σ 𝑘 ∈ ( 0 ... ( 𝑁𝑗 ) ) 𝐴 )
109 108 sumeq2i Σ 𝑗 ∈ ( 0 ... 𝑁 ) Σ 𝑘 ∈ ( 0 ... ( 𝑁𝑗 ) ) 𝑘 / 𝑥 𝐵 = Σ 𝑗 ∈ ( 0 ... 𝑁 ) Σ 𝑘 ∈ ( 0 ... ( 𝑁𝑗 ) ) 𝐴
110 ovex ( 𝑘𝑗 ) ∈ V
111 110 2 csbie ( 𝑘𝑗 ) / 𝑥 𝐵 = 𝐶
112 111 a1i ( ( 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘𝑗 ) / 𝑥 𝐵 = 𝐶 )
113 112 sumeq2dv ( 𝑘 ∈ ( 0 ... 𝑁 ) → Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝑘𝑗 ) / 𝑥 𝐵 = Σ 𝑗 ∈ ( 0 ... 𝑘 ) 𝐶 )
114 113 sumeq2i Σ 𝑘 ∈ ( 0 ... 𝑁 ) Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝑘𝑗 ) / 𝑥 𝐵 = Σ 𝑘 ∈ ( 0 ... 𝑁 ) Σ 𝑗 ∈ ( 0 ... 𝑘 ) 𝐶
115 104 109 114 3eqtr3g ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑁 ) Σ 𝑘 ∈ ( 0 ... ( 𝑁𝑗 ) ) 𝐴 = Σ 𝑘 ∈ ( 0 ... 𝑁 ) Σ 𝑗 ∈ ( 0 ... 𝑘 ) 𝐶 )