Metamath Proof Explorer


Theorem fsum1

Description: The finite sum of A ( k ) from k = M to M (i.e. a sum with only one term) is B i.e. A ( M ) . (Contributed by NM, 8-Nov-2005) (Revised by Mario Carneiro, 21-Apr-2014)

Ref Expression
Hypothesis fsum1.1 ( 𝑘 = 𝑀𝐴 = 𝐵 )
Assertion fsum1 ( ( 𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 fsum1.1 ( 𝑘 = 𝑀𝐴 = 𝐵 )
2 fzsn ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } )
3 2 adantr ( ( 𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ ) → ( 𝑀 ... 𝑀 ) = { 𝑀 } )
4 3 sumeq1d ( ( 𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 = Σ 𝑘 ∈ { 𝑀 } 𝐴 )
5 1 sumsn ( ( 𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ { 𝑀 } 𝐴 = 𝐵 )
6 4 5 eqtrd ( ( 𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 = 𝐵 )